397 research outputs found

    Partitioning Complex Networks via Size-constrained Clustering

    Full text link
    The most commonly used method to tackle the graph partitioning problem in practice is the multilevel approach. During a coarsening phase, a multilevel graph partitioning algorithm reduces the graph size by iteratively contracting nodes and edges until the graph is small enough to be partitioned by some other algorithm. A partition of the input graph is then constructed by successively transferring the solution to the next finer graph and applying a local search algorithm to improve the current solution. In this paper, we describe a novel approach to partition graphs effectively especially if the networks have a highly irregular structure. More precisely, our algorithm provides graph coarsening by iteratively contracting size-constrained clusterings that are computed using a label propagation algorithm. The same algorithm that provides the size-constrained clusterings can also be used during uncoarsening as a fast and simple local search algorithm. Depending on the algorithm's configuration, we are able to compute partitions of very high quality outperforming all competitors, or partitions that are comparable to the best competitor in terms of quality, hMetis, while being nearly an order of magnitude faster on average. The fastest configuration partitions the largest graph available to us with 3.3 billion edges using a single machine in about ten minutes while cutting less than half of the edges than the fastest competitor, kMetis

    Major Element Chemical Heterogeneity in Geo2 Olivine Micro-Beam Reference Material: A Spatial Approach to Quantifying Heterogeneity in Primary Reference Materials

    Get PDF
    A 270 spot-analysis study was conducted across a large (ca. 1200 ÎĽm x 1200 ÎĽm) chip of Geo2 olivine from a commercially available GEO Mk2 block (P and H Developments 2016) which revealed a 8.7% relative range in FeO abundance. Interleaved and overlapping grids of different resolutions were measured sequentially to prove spatial patterns are not due to drift or other external sources of error. Results were mapped and interpolated using commercially available geographical information system software, such that composition could be predicted according to location with high accuracy. The simple, systematic zonation pattern observed demonstrates that useful-sized regions of acceptable homogeneity do exist for some elements. This knowledge allows a user to target individual regions of a characterised chip for use as distinct measurement standards. As analysis times decrease and datasets grow, this approach may maximise laboratory efficiency by characterising large chips and extending time between standard block re-polish and coating, particularly in those cases where the avoidance of prior beam damage is a key concern

    Electron probe microanalysis (EPMA) in the Earth Sciences

    Get PDF

    Si-metasomatism in serpentinized peridotite: The effects of talc-alteration on strontium and boron isotopes in abyssal serpentinites from Hole 1268a, ODP Leg 209

    Get PDF
    Ultramafic rocks recovered from Hole 1268a, Ocean Drilling Program Leg 209, to the south of the 15°20′N Fracture Zone on the Mid-Atlantic ridge have experienced a complex history of melt depletion and subsequent interaction with a series of fluids under varying temperature and pH conditions. After intense melt depletion, varying degrees of serpentinization at 100–200 °C took place, initially under seawater-like pH conditions. Subsequently, interaction with a higher temperature (300–350 °C) fluid with low (4–5) pH and low MgO/SiO2 resulted in the heterogeneous alteration of these serpentinites to talc-bearing ultramafic lithologies. The proximity of the currently active, high temperature Logatchev hydrothermal field, located on the opposite flank of the Mid-Atlantic ridge, suggests that unlike more distal localities sampled during ODP Leg 209, Hole 1268a has experienced Si-metasomatism (i.e. talc-alteration) by a Logatchev-like hydrothermal fluid. Serpentinite strontium isotope ratios were not materially shifted by interaction with the subsequent high-T fluid, despite the likelihood that this fluid had locally interacted with mid-ocean ridge gabbro. 87Sr/86Sr in the ultramafic lithologies of Hole 1268a are close to that of seawater (c.0.709) and even acid leached serpentinites retain 87Sr/86Sr in excess of 0.707, indistinguishable from Logatchev hydrothermal fluid. On the other hand, boron isotope ratios appear to have been shifted from seawater-like values in the serpentinites (δ11B = c.+40‰) to much lighter values in talc-altered serpentinites (δ11B = +9 to +20‰). This is likely a consequence of the effects of changing ambient pH and temperature during the mineralogical transition from serpentine to talc. Heterogeneous boron isotope systematics have consequences for the composition of ultramafic portions of the lithosphere returned to the convecting mantle by subduction. Inhomogeneities in δ11B, [B] and mineralogy introduce significant uncertainties in the prediction of the composition of slab fluids released during the early- to mid-stages of subduction

    Multilevel mesh partitioning for optimising domain shape

    Get PDF
    Multilevel algorithms are a successful class of optimisation techniques which address the mesh partitioning problem for mapping meshes onto parallel computers. They usually combine a graph contraction algorithm together with a local optimisation method which refines the partition at each graph level. To date these algorithms have been used almost exclusively to minimise the cut-edge weight in the graph with the aim of minimising the parallel communication overhead. However it has been shown that for certain classes of problem, the convergence of the underlying solution algorithm is strongly influenced by the shape or aspect ratio of the subdomains. In this paper therefore, we modify the multilevel algorithms in order to optimise a cost function based on aspect ratio. Several variants of the algorithms are tested and shown to provide excellent results

    WS10.3 Adherence with ivacaftor in cystic fibrosis patients with the G551D mutation

    Get PDF

    The Crystal Hotel: A Microfluidic Approach to Biomimetic Crystallization

    Get PDF
    A “crystal hotel” microfluidic device that allows crystal growth in confined volumes to be studied in situ is used to produce large calcite single crystals with predefined crystallographic orientation, microstructure, and shape by control of the detailed physical environment, flow, and surface chemistry. This general approach can be extended to form technologically important, nanopatterned single crystals

    Initial validation of a novel method of presurgical language localization through functional connectivity (fcMRI)

    Get PDF
    OBJECTIVE: Neurosurgery is potentially curative in chronic epilepsy but can only be offered to patients if the surgical risk to language is known. Clinical functional magnetic resonance imaging (fMRI) is an ideal, noninvasive method for localizing language cortex yet remains to be validated for this purpose. We have recently presented a novel method for localizing language cortex. Here we present a preliminary evaluation of this method’s validity. We hypothesized language regions identified using this novel method would demonstrate stronger functional connectivity than randomly generated set of proximal networks. METHOD: fMRI data were collected from sixteen temporal lobe patients (12 left) being evaluated for epilepsy surgery at UCLA (mean age 38.9 [sd 11.4]; 6 female; per Wada 14 left language dominant, 1 right, 1 mixed). Language maps were generated using a recently standardized method relying on a conjunction of language tasks (e.g., visual object naming; auditory naming; reading) to identify known language regions (Broca’s area; inferior and superior Wernicke’s Areas; Angular gyrus; Basal Temporal Language Area; Exner’s Area; and Supplementary Speech Area). With activations defined as network nodes, mean network connectivity was compared via permutation tests with alternate (i) fully random and (ii) proximal random networks. Mean network connectivity was determined in independently-acquired motor fMRI datasets (9 foot, 16 hand, 14 tongue). FINDINGS: 77% (30/39) of clinician-derived language networks exhibited mean connectivity greater than fully random networks (p\u3c0.05). Similarly, 69% (27/39) of clinician-derived language networks exhibited mean connectivity greater than proximal random networks (p\u3c0.05). Further analysis of networks not passing the permutation test suggests that low connectivity of non-valid networks may be driven not by low connectivity across all nodes, but by individual nodes that may not actually possess membership within the network. CONCLUSIONS: This study provides preliminary validity for a novel, clinician-based approach to mapping language cortex pre-surgery. This complements our recent work showing this method is reliable, and supports a proposed study comparing fMRI language maps using this technique with the results of direct stimulation mapping

    Lack of regional pathways impact on surgical delay: Analysis of the Orthopaedic Trauma Hospital Outcomes-Patient Operative Delays (ORTHOPOD) study.

    Get PDF
    INTRODUCTION: Current practice following injury within the United Kingdom is to receive surgery, at the institution of first contact regardless of ability to provide timely intervention and inconsiderate of neighbouring hospital resource and capacity. This can lead to a mismatch of demand and capacity, delayed surgery and stress within hospital systems, particularly with regards to elective services. We demonstrate through a multicentre, multinational study, the impact of this at scale. METHODOLOGY: ORTHOPOD data collection period was between 22/08/2022 and 16/10/2022 and consisted of two arms. Arm 1 captured orthopaedic trauma caseload and capacity in terms of sessions available per centre and patients awaiting surgery per centre per given week. Arm 2 recorded patient and injury demographics, time of decision making, outpatient and inpatient timeframes as well as time to surgery. Hand and spine cases were excluded. For this regional comparison, regional trauma networks with a minimum of four centres enroled onto the ORTHOPOD study were exclusively analysed. RESULTS: Following analysis of 11,202 patient episodes across 30 hospitals we found no movement of any patient between hospitals to enable prompt surgery. There is no current system to move patients, between regional centres despite clear discrepancies in workload per capacity across the United Kingdom. Many patients wait for days for surgery when simple transfer to a neighbouring hospital (within 10 miles in many instances) would result in prompt care within national guidelines. CONCLUSION: Most trauma patients in the United Kingdom are managed exclusively at the place of first presentation, with no consideration of alternative pathways to local hospitals that may, at that time, offer increased operative capacity and a shorter waiting time. There is no oversight of trauma workload per capacity at neighbouring hospitals within a regional trauma network. This leads to a marked disparity in waiting time to surgery, and subsequently it can be inferred but not proven, poorer patient experience and outcomes. This inevitably leads to a strain on the overall trauma system and across several centres can impact on elective surgery recovery. We propose the consideration of inter-regional network collaboration, aligned with the Major Trauma System

    A Distributed Multilevel Force-directed Algorithm

    Full text link
    The wide availability of powerful and inexpensive cloud computing services naturally motivates the study of distributed graph layout algorithms, able to scale to very large graphs. Nowadays, to process Big Data, companies are increasingly relying on PaaS infrastructures rather than buying and maintaining complex and expensive hardware. So far, only a few examples of basic force-directed algorithms that work in a distributed environment have been described. Instead, the design of a distributed multilevel force-directed algorithm is a much more challenging task, not yet addressed. We present the first multilevel force-directed algorithm based on a distributed vertex-centric paradigm, and its implementation on Giraph, a popular platform for distributed graph algorithms. Experiments show the effectiveness and the scalability of the approach. Using an inexpensive cloud computing service of Amazon, we draw graphs with ten million edges in about 60 minutes.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • …
    corecore