4 research outputs found

    Retreatment for hepatitis C virus direct-acting antiviral therapy virological failure in primary and tertiary settings: The REACH-C cohort

    Full text link
    Virological failure occurs in a small proportion of people treated for hepatitis C virus (HCV) with direct-acting antiviral (DAA) therapies. This study assessed retreatment for virological failure in a large real-world cohort. REACH-C is an Australian observational study (n = 10,843) evaluating treatment outcomes of sequential DAA initiations across 33 health services between March 2016 to June 2019. Virological failure retreatment data were collected until October 2020. Of 408 people with virological failure (81% male; median age 53; 38% cirrhosis; 56% genotype 3), 213 (54%) were retreated once; 15 were retreated twice. A range of genotype specific and pangenotypic DAAs were used to retreat virological failure in primary (n = 56) and tertiary (n = 157) settings. Following sofosbuvir/velpatasvir/voxilaprevir availability in 2019, the proportion retreated in primary care increased from 21% to 40% and median time to retreatment initiation declined from 294 to 152 days. Per protocol (PP) sustained virological response (SVR12) was similar for people retreated in primary and tertiary settings (80% vs 81%; p = 1.000). In regression analysis, sofosbuvir/velpatasvir/voxilaprevir (vs. other regimens) significantly decreased likelihood of second virological failure (PP SVR12 88% vs. 77%; adjusted odds ratio [AOR] 0.29; 95%CI 0.11–0.81); cirrhosis increased likelihood (PP SVR12 69% vs. 91%; AOR 4.26; 95%CI 1.64–11.09). Indigenous Australians had lower likelihood of retreatment initiation (AOR 0.36; 95%CI 0.15–0.81). Treatment setting and prescriber type were not associated with retreatment initiation or outcome. Virological failure can be effectively retreated in primary care. Expanded access to simplified retreatment regimens through decentralized models may increase retreatment uptake and reduce HCV-related mortality

    The ACCELERATE Plus (assessment and communication excellence for safe patient outcomes) Trial Protocol: a stepped-wedge cluster randomised trial, cost-benefit analysis, and process evaluation

    No full text
    Background: Nurses play an essential role in patient safety. Inadequate nursing physical assessment and communication in handover practices are associated with increased patient deterioration, falls and pressure injuries. Despite internationally implemented rapid response systems, falls and pressure injury reduction strategies, and recommendations to conduct clinical handovers at patients’ bedside, adverse events persist. This trial aims to evaluate the effectiveness, implementation, and cost–benefit of an externally facilitated, nurse-led intervention delivered at the ward level for core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication. We hypothesise the trial will reduce medical emergency team calls, unplanned intensive care unit admissions, falls and pressure injuries. Methods: A stepped-wedge cluster randomised trial will be conducted over 52 weeks. The intervention consists of a nursing core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication and will be implemented in 24 wards across eight hospitals. The intervention will use theoretically informed implementation strategies for changing clinician behaviour, consisting of: nursing executive site engagement; a train-the-trainer model for cascading facilitation; embedded site leads; nursing unit manager leadership training; nursing and medical ward-level clinical champions; ward nurses’ education workshops; intervention tailoring; and reminders. The primary outcome will be a composite measure of medical emergency team calls (rapid response calls and ‘Code Blue’ calls), unplanned intensive care unit admissions, in-hospital falls and hospital-acquired pressure injuries; these measures individually will also form secondary outcomes. Other secondary outcomes are: i) patient-reported experience measures of receiving safe and patient-centred care, ii) nurses’ perceptions of barriers to physical assessment, readiness to change, and staff engagement, and iii) nurses’ and medical officers’ perceptions of safety culture and interprofessional collaboration. Primary outcome data will be collected for the trial duration, and secondary outcome surveys will be collected prior to each step and at trial conclusion. A cost–benefit analysis and post-trial process evaluation will also be undertaken. Discussion: If effective, this intervention has the potential to improve nursing care, reduce patient harm and improve patient outcomes. The evidence-based implementation strategy has been designed to be embedded within existing hospital workforces; if cost-effective, it will be readily translatable to other hospitals nationally. Trial registration: Australian New Zealand Clinical Trials Registry ID: ACTRN12622000155796. Date registered: 31/01/2022

    The ACCELERATE Plus (assessment and communication excellence for safe patient outcomes) Trial Protocol: a stepped-wedge cluster randomised trial, cost-benefit analysis, and process evaluation

    No full text
    Abstract Background Nurses play an essential role in patient safety. Inadequate nursing physical assessment and communication in handover practices are associated with increased patient deterioration, falls and pressure injuries. Despite internationally implemented rapid response systems, falls and pressure injury reduction strategies, and recommendations to conduct clinical handovers at patients’ bedside, adverse events persist. This trial aims to evaluate the effectiveness, implementation, and cost–benefit of an externally facilitated, nurse-led intervention delivered at the ward level for core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication. We hypothesise the trial will reduce medical emergency team calls, unplanned intensive care unit admissions, falls and pressure injuries. Methods A stepped-wedge cluster randomised trial will be conducted over 52 weeks. The intervention consists of a nursing core physical assessment, structured patient-centred bedside handover and improved multidisciplinary communication and will be implemented in 24 wards across eight hospitals. The intervention will use theoretically informed implementation strategies for changing clinician behaviour, consisting of: nursing executive site engagement; a train-the-trainer model for cascading facilitation; embedded site leads; nursing unit manager leadership training; nursing and medical ward-level clinical champions; ward nurses’ education workshops; intervention tailoring; and reminders. The primary outcome will be a composite measure of medical emergency team calls (rapid response calls and ‘Code Blue’ calls), unplanned intensive care unit admissions, in-hospital falls and hospital-acquired pressure injuries; these measures individually will also form secondary outcomes. Other secondary outcomes are: i) patient-reported experience measures of receiving safe and patient-centred care, ii) nurses’ perceptions of barriers to physical assessment, readiness to change, and staff engagement, and iii) nurses’ and medical officers’ perceptions of safety culture and interprofessional collaboration. Primary outcome data will be collected for the trial duration, and secondary outcome surveys will be collected prior to each step and at trial conclusion. A cost–benefit analysis and post-trial process evaluation will also be undertaken. Discussion If effective, this intervention has the potential to improve nursing care, reduce patient harm and improve patient outcomes. The evidence-based implementation strategy has been designed to be embedded within existing hospital workforces; if cost-effective, it will be readily translatable to other hospitals nationally. Trial registration Australian New Zealand Clinical Trials Registry ID: ACTRN12622000155796. Date registered: 31/01/2022

    Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: an observational study

    Get PDF
    Background A rapid, accurate, non-invasive diagnostic screen is needed to identify people with SARS-CoV-2 infection. We investigated whether organic semi-conducting (OSC) sensors and trained dogs could distinguish between people infected with asymptomatic or mild symptoms, and uninfected individuals, and the impact of screening at ports-of-entry. Methods Odour samples were collected from adults, and SARS-CoV-2 infection status confirmed using RT-PCR. OSC sensors captured the volatile organic compound (VOC) profile of odour samples. Trained dogs were tested in a double-blind trial to determine their ability to detect differences in VOCs between infected and uninfected individuals, with sensitivity and specificity as the primary outcome. Mathematical modelling was used to investigate the impact of bio-detection dogs for screening. Results About, 3921 adults were enrolled in the study and odour samples collected from 1097 SARS-CoV-2 infected and 2031 uninfected individuals. OSC sensors were able to distinguish between SARS-CoV-2 infected individuals and uninfected, with sensitivity from 98% (95% CI 95–100) to 100% and specificity from 99% (95% CI 97–100) to 100%. Six dogs were able to distinguish between samples with sensitivity ranging from 82% (95% CI 76–87) to 94% (95% CI 89–98) and specificity ranging from 76% (95% CI 70–82) to 92% (95% CI 88–96). Mathematical modelling suggests that dog screening plus a confirmatory PCR test could detect up to 89% of SARS-CoV-2 infections, averting up to 2.2 times as much transmission compared to isolation of symptomatic individuals only. Conclusions People infected with SARS-CoV-2, with asymptomatic or mild symptoms, have a distinct odour that can be identified by sensors and trained dogs with a high degree of accuracy. Odour-based diagnostics using sensors and/or dogs may prove a rapid and effective tool for screening large numbers of people
    corecore