12 research outputs found

    Computational fluid dynamics (CFD) modeling of single-use, vertical-wheel bioreactors as a predictive scale-up tool for large scale stem cell culture

    Get PDF
    Hydrodynamic variables in bioreactors such as velocity, shear rate, and energy dissipation rate have been shown to affect stem cell properties including: aggregate size, growth, plenotype, and differentiation potential. Unlike traditional bioreactor scale-up equations, CFD modeling allows the user to customize geometry so that scale-up equations can be derived between reactors of any given shape and size. We have recently published data that suggests maintaining the volume average energy dissipation rate, derived from CFD simulations, provides a robust method for scale-up of aggregate culture in stirred suspension bioreactors. Turbulent flow consists of eddies formed when kinetic energy is transferred. Energy dissipation rate is the parameter that determines the amount of energy lost by viscous forces in the flow, and interactions with turbulent eddies influence aggregate size. Aggregates in the culture that are smaller than eddies are engulfed and aggregates that are larger are sheared apart. Please click Additional Files below to see the full abstract

    Using newly optimized genetic tools to probe Strongyloides sensory behaviors.

    No full text
    The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis

    An Integrated Approach toward the Biomanufacturing of Engineered Cell Therapy Products in a Stirred-Suspension Bioreactor

    No full text
    Recent advances in stem cell biology have accelerated the pre-clinical development of cell-based therapies for degenerative and chronic diseases. The success of this growing area hinges upon the concomitant development of scalable manufacturing platforms that can produce clinically relevant quantities of cells for thousands of patients. Current biomanufacturing practices for cell therapy products are built on a model previously optimized for biologics, wherein stable cell lines are established first, followed by large-scale production in the bioreactor. This “two-step” approach can be costly, labor-intensive, and time-consuming, particularly for cell therapy products that must be individually sourced from patients or compatible donors. In this report, we describe a “one-step” integrated approach toward the biomanufacturing of engineered cell therapy products by direct transfection of primary human fibroblast in a continuous stirred-suspension bioreactor. We optimized the transfection efficiency by testing rate-limiting factors, including cell seeding density, agitation rate, oxygen saturation, microcarrier type, and serum concentration. By combining the genetic modification step with the large-scale expansion step, this not only removes the need for manual handing of cells in planar culture dishes, but also enables the biomanufacturing process to be streamlined and automated in one fully enclosed bioreactor. Keywords: bioprocess, gene delivery, transfection, biotechnology, cationic polymer, cell therapy, biomanufacturing, genetic engineering, plasmid DNA, bioreacto

    Overcoming bioprocess bottlenecks in the large-scale expansion of high-quality hiPSC aggregates in vertical-wheel stirred suspension bioreactors

    No full text
    Abstract Background Human induced pluripotent stem cells (hiPSCs) hold enormous promise in accelerating breakthroughs in understanding human development, drug screening, disease modeling, and cell and gene therapies. Their potential, however, has been bottlenecked in a mostly laboratory setting due to bioprocess challenges in the scale-up of large quantities of high-quality cells for clinical and manufacturing purposes. While several studies have investigated the production of hiPSCs in bioreactors, the use of conventional horizontal-impeller, paddle, and rocking-wave mixing mechanisms have demonstrated unfavorable hydrodynamic environments for hiPSC growth and quality maintenance. This study focused on using computational fluid dynamics (CFD) modeling to aid in characterizing and optimizing the use of vertical-wheel bioreactors for hiPSC production. Methods The vertical-wheel bioreactor was modeled with CFD simulation software Fluent at agitation rates between 20 and 100 rpm. These models produced fluid flow patterns that mapped out a hydrodynamic environment to guide in the development of hiPSC inoculation and in-vessel aggregate dissociation protocols. The effect of single-cell inoculation on aggregate formation and growth was tested at select CFD-modeled agitation rates and feeding regimes in the vertical-wheel bioreactor. An in-vessel dissociation protocol was developed through the testing of various proteolytic enzymes and agitation exposure times. Results CFD modeling demonstrated the unique flow pattern and homogeneous distribution of hydrodynamic forces produced in the vertical-wheel bioreactor, making it the opportune environment for systematic bioprocess optimization of hiPSC expansion. We developed a scalable, single-cell inoculation protocol for the culture of hiPSCs as aggregates in vertical-wheel bioreactors, achieving over 30-fold expansion in 6 days without sacrificing cell quality. We have also provided the first published protocol for in-vessel hiPSC aggregate dissociation, permitting the entire bioreactor volume to be harvested into single cells for serial passaging into larger scale reactors. Importantly, the cells harvested and re-inoculated into scaled-up vertical-wheel bioreactors not only maintained consistent growth kinetics, they maintained a normal karyotype and pluripotent characterization and function. Conclusions Taken together, these protocols provide a feasible solution for the culture of high-quality hiPSCs at a clinical and manufacturing scale by overcoming some of the major documented bioprocess bottlenecks
    corecore