1,259 research outputs found

    Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae.

    No full text
    Combination therapy that includes artemisinin derivatives cures most falciparum malaria infections. Lowering transmission by reducing gametocyte infectivity would be an additional benefit. To examine the effect of such therapy on transmission, Gambian children with Plasmodium falciparum malaria were treated with standard regimens of chloroquine or pyrimethamine-sulfadoxine alone or in combination with 1 or 3 doses of artesunate. The infectivity to mosquitoes of gametocytes in peripheral blood was determined 4 or 7 days after treatment. Infection of mosquitoes was observed in all treatment groups and was positively associated with gametocyte density. The probability of transmission was lowest in those who received pyrimethamine-sulfadoxine and 3 doses of artesunate, and it was 8-fold higher in the group that received pyrimethamine-sulfadoxine alone. Artesunate reduced posttreatment infectivity dramatically but did not abolish it completely. The study raises questions about any policy to use pyrimethamine-sulfadoxine alone as the first-line treatment for malaria

    Adiabatically changing the phase-space density of a trapped Bose gas

    Get PDF
    We show that the degeneracy parameter of a trapped Bose gas can be changed adiabatically in a reversible way, both in the Boltzmann regime and in the degenerate Bose regime. We have performed measurements on spin-polarized atomic hydrogen in the Boltzmann regime demonstrating reversible changes of the degeneracy parameter (phase-space density) by more than a factor of two. This result is in perfect agreement with theory. By extending our theoretical analysis to the quantum degenerate regime we predict that, starting close enough to the Bose-Einstein phase transition, one can cross the transition by an adiabatic change of the trap shape.Comment: 4 pages, 3 figures, Latex, submitted to PR

    Towards a guided atom interferometer based on a superconducting atom chip

    Full text link
    We evaluate the realization of a novel geometry of a guided atom interferometer based on a high temperature superconducting microstructure. The interferometer type structure is obtained with a guiding potential realized by two current carrying superconducting wires in combination with a closed superconducting loop sustaining a persistent current. We present the layout and realization of our superconducting atom chip. By employing simulations we discuss the critical parameters of the interferometer guide in particular near the splitting regions of the matter waves. Based on measurements of the relevant chip properties we discuss the application of a compact and reliable on-chip atom interferometer.Comment: 14 pages, 7 figures, accepted for New Journal of Physic

    Broad Feshbach resonance in the 6Li-40K mixture

    Get PDF
    We study the widths of interspecies Feshbach resonances in a mixture of the fermionic quantum gases 6Li and 40K. We develop a model to calculate the width and position of all available Feshbach resonances for a system. Using the model we select the optimal resonance to study the 6Li/40K mixture. Experimentally, we obtain the asymmetric Fano lineshape of the interspecies elastic cross section by measuring the distillation rate of 6Li atoms from a potassium-rich 6Li/40K mixture as a function of magnetic field. This provides us with the first experimental determination of the width of a resonance in this mixture, Delta B=1.5(5) G. Our results offer good perspectives for the observation of universal crossover physics using this mass-imbalanced fermionic mixture.Comment: 4 pages, 2 figure

    A History of Aboriginal Sydney…digitally delivering the past to the present

    Get PDF
    For more than two centuries, the history of the Indigenous people of the Sydney region has remained locked away in archives, held within families, or obliterated by the dominant culture. Now, with community approval and co-operation, our project, A history of Aboriginal Sydney, is beginning to use digital tools to restore Sydney's Aboriginal history in forms which can be appreciated and shared by the families themselves, by high school students and by everyone who values the history and culture of Australia's first peoples. Our project is based on the developing knowledge management platform, which integrates historical records, methods and tools of e-scholarship, and solutions for delivering research data for different uses. The project team employs methods such as marking of topic threads, and linking data with interactive timelines and digital maps to enable online learning and information discovery on the website . The project itself is based in the Department of History, University of Sydney and is funded by an Australia Research Council, Australian Professorial Fellowship and Discovery Grant. The research data are archived in ATSIDA (Aboriginal and Torres Strait Islander Data Archive), which provides long-term preservation and manages appropriate access to the data.ARC, ATSID

    Continuous loading of a non-dissipative atom trap

    Full text link
    We study theoretically a scheme in which particles from an incident beam are trapped in a potential well when colliding with particles already present in the well. The balance between the arrival of new particles and the evaporation of particles from the trapped cloud leads to a steady-state that we characterize in terms of particle number and temperature. For a cigar shaped potential, different longitudinal and transverse evaporation thresholds can be chosen. We show that a resonance occur when the transverse evaporation threshold coincides with the energy of the incident particles. It leads to a dramatic increase in phase space density with respect to the incident beam.Comment: 7 pages, 2 figure
    corecore