8 research outputs found
The implications of lung-regulated buoyancy control for dive depth and duration
Among air-breathing divers, control of buoyancy through lung volume regulation may be most highly developed in marine turtles. In short, the turtle lung may serve a dual role as both an oxygen store and in buoyancy control. A simple model is developed to show that, for turtles diving up to the maximum depth at which they can still use their lungs to attain neutral buoyancy, the total oxygen store will increase greatly with dive depth, and hence a corresponding increase in dive duration is predicted. Time–depth recorders attached to free-living green turtles (Chelonia mydas) at Ascension Island confirmed a marked increase in dive duration with depth, with the gradient of this relationship being >10 times that seen in diving birds and mammals. Consistent with the prediction that the lungs serve a dual role, we found that, when lead weights were added to some turtles to increase their specific gravity, the mean depth of dives decreased, but for dives to the same depth, weighted animals dived for longer. The depth distribution of green turtles seems to be generally constrained by the maximum depth at which they can still attain close to neutral buoyancy
Toxic marine microalgae and shellfish poisoning in the British isles: history, review of epidemiology, and future implications
The relationship between toxic marine microalgae species and climate change has become a high profile and well discussed topic in recent years, with research focusing on the possible future impacts of changing hydrological conditions on Harmful Algal Bloom (HAB) species around the world. However, there is very little literature concerning the epidemiology of these species on marine organisms and human health. Here, we examine the current state of toxic microalgae species around the UK, in two ways: first we describe the key toxic syndromes and gather together the disparate reported data on their epidemiology from UK records and monitoring procedures. Secondly, using NHS hospital admissions and GP records from Wales, we attempt to quantify the incidence of shellfish poisoning from an independent source. We show that within the UK, outbreaks of shellfish poisoning are rare but occurring on a yearly basis in different regions and affecting a diverse range of molluscan shellfish and other marine organisms. We also show that the abundance of a species does not necessarily correlate to the rate of toxic events. Based on routine hospital records, the numbers of shellfish poisonings in the UK are very low, but the identification of the toxin involved, or even a confirmation of a poisoning event is extremely difficult to diagnose. An effective shellfish monitoring system, which shuts down aquaculture sites when toxins exceed regularity limits, has clearly prevented serious impact to human health, and remains the only viable means of monitoring the potential threat to human health. However, the closure of these sites has an adverse economic impact, and the monitoring system does not include all toxic plankton. The possible geographic spreading of toxic microalgae species is therefore a concern, as warmer waters in the Atlantic could suit several species with southern biogeographical affinities enabling them to occupy the coastal regions of the UK, but which are not yet monitored or considered to be detrimental
Mismatch between marine plankton range movements and the velocity of climate change
The response of marine plankton to climate change is of critical importance to the oceanic food web and fish stocks. We use a 60-year ocean basin-wide data set comprising >148,000 samples to reveal huge differences in range changes associated with climate change across 35 plankton taxa. While the range of dinoflagellates and copepods tended to closely track the velocity of climate change (the rate of isotherm movement), the range of the diatoms moved much more slowly. Differences in range shifts were up to 900 km in a recent warming period, with average velocities of range movement between 7 km per decade northwards for taxa exhibiting niche plasticity and 99 km per decade for taxa exhibiting niche conservatism. The differing responses of taxa to global warming will cause spatial restructuring of the plankton ecosystem with likely consequences for grazing pressures on phytoplankton and hence for biogeochemical cycling, higher trophic levels and biodiversity
Continuous plankton records stand the test of time: evaluation of flow rates, clogging and the continuity of the CPR time-series
The Continuous Plankton Recorder (CPR) survey is one of the most extensive biological time-series in existence and has been in operation over major regions of the North Atlantic since 1932. However, there is little information about the volume of water filtered through each sample, but rather a general assumption has persisted that each sample represents 3 m3. Data from electromagnetic flowmeters, deployed on CPRs between 1995 and 1998, was examined. The mean volume filtered through samples was 3.11 m3 and the effect of clogging on filtration efficiencies was not great. Consequently, even when the likely variations in flow due to clogging are taken into account, previously identified links between zooplankton abundance and climatic signals remain strong
Long-term changes in abundance and distribution of microzooplankton in the NE Atlantic and North Sea
Long-term changes in mesozooplankton and phytoplankton populations have been well documented in the North Atlantic region, whereas data for microzooplankton are scarce. This neglected component of the plankton is a vital link in marine food-webs, grazing on smaller flagellates and cyanobacteria and in turn providing food for the larger mesozooplankton. We use the latest tintinnid (Ciliophora, Protista) data from the Continuous Plankton Recorder (CPR) survey in the NE Atlantic and North Sea to examine the phenology, distribution and abundance of this important group of ciliates. Presence/absence data came from 167 122 CPR samples collected between 1960 and 2009 and abundance data from 49 662 samples collected between 1996 and 2009. In the North Atlantic the genus Dictyocysta spp. dominated and Parafavella gigantea showed an increase in abundance around Iceland and Greenland. In the North Sea higher densities of Tintinnopsis spp., Favella serrata and Ptychocylis spp. were found. The presence of tintinnids in CPR samples collected in the North Atlantic has increased over the last 50 years and the seasonal window of high abundance has lengthened. Conversely in the North Sea there has been an overall reduction in abundance. We discuss possible drivers for these long-term changes and point the way forward to more holistic studies that examine how ecosystems, rather than just selected taxa, are responding to climate change