1,959 research outputs found

    A derivative method for minimising total cost in heat exchanger networks through optimal area allocation

    Get PDF
    This paper presents a novel Cost Derivative Method (CDM) for finding the optimal area allocation for a defined Heat Exchanger Network (HEN) structure and stream data, without any stream splits to achieve minimum total cost. Using the Pinch Design Method (PDM) to determine the HEN structure, the approach attempts to add, remove and shift area to exchangers where economic benefits are returned. From the derivation of the method, it is found that the slope of the Δ-NTU relationship for the specific heat exchanger type, in combination with the difference in exchanger inlet temperatures and the overall heat transfer coefficient, are critical to calculating the extra overall duty each incremental area element returns. The approach is able to account for differences in film coefficients, heat exchanger types, flow arrangements, exchanger cost functions, and utility pricing. Incorporated into the method is the newly defined “utility cost savings flow-on” factor, Ξ, which evaluates downstream effects on utility use and cost that are caused by changing the area of one exchanger. To illustrate the method, the CDM is applied to the distillation example of Gundersen (2000). After applying the new CDM, the total annual cost was reduced by 7.1 % mainly due to 24 % less HEN area for similar heat recovery. Area reduction resulted from one exchanger having a minimum approach temperature (ΔTmin) of 7.7 °C while the other recovery exchangers had larger ΔTmin values. The optimum ΔTmin for the PDM was 12.5 °C. The CDM solution was found to give a comparable minimum total area and cost to two recently published programming HEN synthesis solutions for the same problem without requiring the increased network complexity through multiple stream splits

    Importance of understanding variable and transient energy demand in large multi-product industrial plants for process integration

    Get PDF
    There have been some news releases claiming that Professor Henle in Germany has found the chemical identity of UMF, and that in future chemical analysis will be used instead of assays of antibacterial activity to indicate the level of UMF in manuka honey. Both of these claims are misleading. Because the level of active substance in manuka honey is an unreliable indication of the level of antibacterial activity and can be very misleading, it is hard to see any commercial advantage for it to be used to indicate antibacterial activity other than if someone wanted to fool the consumer into thinking that the higher numbers are giving them a level of antibacterial activity that is far higher than they are really getting

    Detection of FeO towards SgrB2

    Get PDF
    We have observed the J=5-4 ground state transition of FeO at a frequency of 153 GHz towards a selection of galactic sources. Towards the galactic center source SgrB2, we see weak absorption at approximately the velocity of other features towards this source (62 km s−1^{-1} LSR). Towards other sources, the results were negative as they were also for MgOH(3-2) and FeC(6-5). We tentatively conclude that the absorption seen toward SgrB2 is due to FeO in the hot (∌\sim 500 K) relatively low density absorbing gas known to be present in this line of sight. This is the first (albeit tentative) detection of FeO or any iron--containing molecule in the interstellar gas. Assuming the observed absorption to be due to FeO, we estimate [FeO]/[SiO] to be of order or less than 0.002 and [FeO]/[H2_{2}] of order 310−113 10^{-11}. This is compatible with our negative results in other sources. Our results suggest that the iron liberated from grains in the shocks associated with SgrB2 remains atomic and is not processed into molecular form.Comment: 1 postscrit figure,10 page

    Non-continuous and variable rate processes: Optimisation for energy use

    Get PDF
    The need to develop new and improved ways of reducing energy use and increasing energy intensity in industrial processes is currently a major issue in New Zealand. Little attention has been given to optimisation of non-continuous processes in the past, due to their complexity, yet they remain an essential and often energy intensive component of many industrial sites. Novel models based on pinch analysis that aid in minimising utility usage have been constructed here through the adaptation of proven continuous techniques. The knowledge has been integrated into a user friendly software package, and allows the optimisation of processes under variable operating rates and batch conditions. An example problem demonstrates the improvements in energy use that can be gained when using these techniques to analyse non-continuous data. A comparison with results achieved using a pseudo-continuous method show that the method described can provide simultaneous reductions in capital and operating costs

    An Online Documentary Film to Motivate Quit Attempts Among Smokers in the General Population (4Weeks2Freedom): A Randomized Controlled Trial.

    Get PDF
    Online motivational films to promote quit attempts could encourage large numbers of smokers to stop at low unit cost. We evaluated an online film documenting the experiences of smokers who recorded the first month of their successful attempts to quit (4Weeks2Freedom). The film was designed to boost motivation and self-efficacy and provide role-models to promote ex-smoker identities

    The Nature of the Molecular Environment within 5 pc of the Galactic Center

    Full text link
    We present a detailed study of molecular gas in the central 10pc of the Galaxy through spectral line observations of four rotation inversion transitions of NH3 made with the VLA. Updated line widths and NH3(1,1) opacities are presented, and temperatures, column densities, and masses are derived. We examine the impact of Sgr A East on molecular material at the Galactic center and find that there is no evidence that the expansion of this shell has moved a significant amount of the 50 km/s GMC. The western streamer, however, shows strong indications that it is composed of material swept-up by the expansion of Sgr A East. Using the mass and kinematics of the western streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor explosion and conclude that Sgr A East was most likely produced by a single supernova. The temperature structure of molecular gas in the central ~20pc is also analyzed in detail. We find that molecular gas has a ``two-temperature'' structure similar to that measured by Huttemeister et al. (2003a) on larger scales. The largest observed line ratios, however, cannot be understood in terms of a two-temperature model, and most likely result from absorption of NH3(3,3) emission by cool surface layers of clouds. By comparing the observed NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular features within a projected distance of 2pc from Sgr A*. Gas associated with the highest line ratios shows kinematic signatures of both rotation and expansion. The southern streamer shows no significant velocity gradients and does not appear to be directly associated with either the circumnuclear disk or the nucleus. The paper concludes with a discussion of the line-of-sight arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size limitations, some of the images have been cut from this version. A complete, color PS or PDF version can be downloaded from http://www.astro.columbia.edu/~herrnstein/NH3/paper

    Measuring sub-Planck structural analogues in chronocyclic phase space

    No full text
    The phase space structure of certain quantum states reveals structure on a scale that is small compared to the Planck area. Using an analog between the wavefunction of a single photon and the electric field of a classical ultrashort optical pulse we show that spectral shearing interferometry enables measurement of such structures directly. Thereby extending the idea of Praxmeyer et al. In particular, we use multiple-shear spectral interferometry to fully characterize a pulse consisting of two sub-pulses which are temporally and spectrally disjoint, without a relative-phase ambiguity. This enables us to compute the Wigner distribution of the pulse. This spectrographic representation of the pulse field features fringes that are tilted with respect to both the time- and frequency axes, showing that in general the shortest sub-Planck distances may not be in the directions of the canonical (and easily experimentally accessible) directions. Further, independent of this orientation, evidence of the sub-Planck scale of the structure maybe extracted directly from the measured signal.Comment: 7 pages, 7 figures, "Quo vadis Quantum Optics"- special issue of Optics Communications in memory of Krzysztof Wodkiewic
    • 

    corecore