3,628 research outputs found

    Optimization of the transmission of observable expectation values and observable statistics in Continuous Variable Teleportation

    Full text link
    We analyze the statistics of observables in continuous variable quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output state observables in particular cumulants which are additive in terms of the input state and the resource of teleportation. Working with Squeezed Bell-like states, which may be optimized in a free parameter for better teleportation performance we discuss the relation between resources optimal for fidelity and for different observable averages. We obtain the values of the free parameter which optimize the central momenta and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters for the second and fourth order cumulants which do not depend on the squeezing of the resource. The second order central momenta which is equal to the second order cumulants and the photon number average are optimized by the same resource. We show that the optimal fidelity resource, found in reference (Phys. Rev. A {\bf 76}, 022301 (2007)) to depend also on the characteristics of input, tends for high squeezing to the resource which optimizes the second order momenta. A similar behavior is obtained for the resource which optimizes the photon statistics which is treated here using the sum of the squared differences in photon probabilities of input and output states as the distortion measure. This is interpreted to mean that the distortions associated to second order momenta dominates the behavior of the output state for large squeezing of the resource. Optimal fidelity and optimal photon statistics resources are compared and is shown that for mixtures of Fock states they are equivalent.Comment: 25 pages, 11 figure

    Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs

    Full text link
    We propose a quantum transport experiment to prepare and measure charge-entanglement between two electrostatically defined quantum dots. Coherent population trapping, as realized in cavity quantum electrodynamics, can be carried out by using a third quantum dot to play the role of the optical cavity. In our proposal, a pumping which is quantum mechanically indistinguishable for the quantum dots drives the system into a state with a high degree of entanglement. The whole effect can be switched on and off by means of a gate potential allowing both state preparation and entanglement detection by simply measuring the total current.Comment: 5 pages, 4 figures, Latex2e with EPL macros, to appear in Europhysics Letter

    Diffraction limit of the sub-Planck structures

    Full text link
    The orthogonality of cat and displaced cat states, underlying Heisenberg limited measurement in quantum metrology, is studied in the limit of large number of states. The asymptotic expression for the corresponding state overlap function, controlled by the sub-Planck structures arising from phase space interference, is obtained exactly. The validity of large phase space support, in which context the asymptotic limit is achieved, is discussed in detail. For large number of coherent states, uniformly located on a circle, it identically matches with the diffraction pattern for a circular ring with uniform angular source strength. This is in accordance with the van Cittert-Zernike theorem, where the overlap function, similar to the mutual coherence function matches with a diffraction pattern.Comment: 5 pages, 3 figure

    Quantum bistability and spin current shot noise of a single quantum dot coupled to an optical microcavity

    Full text link
    Here we explore spin dependent quantum transport through a single quantum dot coupled to an optical microcavity. The spin current is generated by electron tunneling between a single doped reservoir and the dot combined with intradot spin flip transitions induced by a quantized cavity mode. In the limit of strong Coulomb blockade, this model is analogous to the Jaynes-Cummings model in quantum optics and generates a pure spin current in the absence of any charge current. Earlier research has shown that in the classical limit where a large number of such dots interact with the cavity field, the spin current exhibits bistability as a function of the laser amplitude that drives the cavity. We show that in the limit of a single quantum dot this bistability continues to be present in the intracavity photon statistics. Signatures of the bistable photon statistics manifest themselves in the frequency dependent shot noise of the spin current despite the fact that the quantum mechanical average spin current no longer exhibits bistability. Besides having significance for future quantum dot based optoelectronic devices, our results shed light on the relation between bistability, which is traditionally viewed as a classical effect, and quantum mechanics

    Entanglement of distant optomechanical systems

    Get PDF
    We theoretically investigate the possibility to generate non-classical states of optical and mechanical modes of optical cavities, distant from each other. A setup comprised of two identical cavities, each with one fixed and one movable mirror and coupled by an optical fiber, is studied in detail. We show that with such a setup there is potential to generate entanglement between the distant cavities, involving both optical and mechanical modes. The scheme is robust with respect to dissipation, and nonlocal correlations are found to exist in the steady state at finite temperatures.Comment: 12 pages (published with minor modifications

    Boson-Fermion coherence in a spherically symmetric harmonic trap

    Full text link
    We consider the photoassociation of a low-density gas of quantum-degenerate trapped fermionic atoms into bosonic molecules in a spherically symmetric harmonic potential. For a dilute system and the photoassociation coupling energy small compared to the level separation of the trap, only those fermions in the single shell with Fermi energy are coupled to the bosonic molecular field. Introducing a collective pseudo-spin operator formalism we show that this system can then be mapped onto the Tavis-Cummings Hamiltonian of quantum optics, with an additional pairing interaction. By exact diagonalization of the Hamiltonian, we examine the ground state and low excitations of the Bose-Fermi system, and study the dynamics of the coherent coupling between atoms and molecules. In a semiclassical description of the system, the pairing interaction between fermions is shown to result in a self-trapping transition in the photoassociation, with a sudden suppression of the coherent oscillations between atoms and molecules. We also show that the full quantum dynamics of the system is dominated by quantum fluctuations in the vicinity of the self-trapping solution.Comment: 16 pages, 14 figure

    A condition for any realistic theory of quantum systems

    Full text link
    In quantum physics, the density operator completely describes the state. Instead, in classical physics the mean value of every physical quantity is evaluated by means of a probability distribution. We study the possibility to describe pure quantum states and events with classical probability distributions and conditional probabilities and prove that the distributions can not be quadratic functions of the quantum state. Some examples are considered. Finally, we deal with the exponential complexity problem of quantum physics and introduce the concept of classical dimension for a quantum system

    Theory versus experiment for vacuum Rabi oscillations in lossy cavities

    Full text link
    The 1996 Brune {\it et al.} experiment on vacuum Rabi oscillation is analyzed by means of alternative models of atom-reservoir interaction. Agreement with experimental Rabi oscillation data can be obtained if one defines jump operators in the dressed-state basis, and takes into account thermal fluctuations between dressed states belonging to the same manifold. Such low-frequency transitions could be ignored in a closed cavity, but the cavity employed in the experiment was open, which justifies our assumption. The cavity quality factor corresponding to the data is Q=3.311010Q=3.31\cdot 10^{10}, whereas QQ reported in the experiment was Q=7107Q=7\cdot 10^7. The rate of decoherence arising from opening of the cavity can be of the same order as an analogous correction coming from finite time resolution Δt\Delta t (formally equivalent to collisional decoherence). Peres-Horodecki separability criterion shows that the rate at which the atom-field state approaches a separable state is controlled by fluctuations between dressed states from the same manifold, and not by the rate of transitions towards the ground state. In consequence, improving the QQ factor we do not improve the coherence properties of the cavity.Comment: typo in eq. (60) corrected; (older comments: 14 figures (1 added), value of Q improved, a section on the Peres-Horodecki test of separability added, various small improvements; v3 includes discussion of finite time resolution, v4 includes microscopic derivation of the master equation

    Thermodynamics of quantum jump trajectories in systems driven by classical fluctuations

    Full text link
    The large-deviation method can be used to study the measurement trajectories of open quantum systems. For optical arrangements this formalism allows to describe the long time properties of the (non-equilibrium) photon counting statistics in the context of a (equilibrium) thermodynamic approach defined in terms of dynamical phases and transitions between them in the trajectory space [J.P. Garrahan and I. Lesanovsky, Phys. Rev. Lett. 104, 160601 (2010)]. In this paper, we study the thermodynamic approach for fluorescent systems coupled to complex reservoirs that induce stochastic fluctuations in their dynamical parameters. In a fast modulation limit the thermodynamics corresponds to that of a Markovian two-level system. In a slow modulation limit, the thermodynamic properties are equivalent to those of a finite system that in an infinite-size limit is characterized by a first-order transition. The dynamical phases correspond to different intensity regimes, while the size of the system is measured by the transition rate of the bath fluctuations. As a function of a dimensionless intensive variable, the first and second derivative of the thermodynamic potential develop an abrupt change and a narrow peak respectively. Their scaling properties are consistent with a double-Gaussian probability distribution of the associated extensive variable.Comment: 12 pages, 3 figure

    Dynamical multistability in high-finesse micromechanical optical cavities

    Full text link
    We analyze the nonlinear dynamics of a high-finesse optical cavity in which one mirror is mounted on a flexible mechanical element. We find that this system is governed by an array of dynamical attractors, which arise from phase-locking between the mechanical oscillations of the mirror and the ringing of the light intensity in the cavity. We describe an analytical approximation to map out the diagram of attractors in parameter space, derive the slow amplitude dynamics of the system, including thermally activated hopping between different attractors, and suggest a scheme for exploiting the dynamical multistability in the measurement of small displacements.Comment: 5 pages, 4 figure
    corecore