2,235 research outputs found
Cherenkov radiation from fluxon in a stack of coupled long Josephson junctions
We present a systematic study of the Cherenkov radiation of Josephson plasma
waves by fast moving fluxon in a stack of coupled long Josephson junctions for
different fluxon modes. It is found that at some values of parameters
current-voltage characteristic may exhibit a region of the back-bending on the
fluxon step. In the opposite limit the emission of the Cherenkov radiation
takes place. In the annular junctions of moderate length the interaction of the
emitted waves with fluxon results in the novel resonances which emerge on the
top of the fluxon step. We present more exact formulas which describe the
position of such resonances taking into account difference between junction and
non-linear corrections. The possibility of direct detection of the Cherenkov
radiation in junctions of linear geometry is discussed.Comment: 10 pages, 12 figures, accepted to JLT
Signatures of Hong-Ou-Mandel Interference at Microwave Frequencies
Two-photon quantum interference at a beam splitter, commonly known as
Hong-Ou-Mandel interference, was recently demonstrated with
\emph{microwave-frequency} photons by Lang \emph{et
al.}\,\cite{lang:microwaveHOM}. This experiment employed circuit QED systems as
sources of microwave photons, and was based on the measurement of second-order
cross-correlation and auto-correlation functions of the microwave fields at the
outputs of the beam splitter. Here we present the calculation of these
correlation functions for the cases of inputs corresponding to: (i) trains of
\emph{pulsed} Gaussian or Lorentzian single microwave photons, and (ii)
resonant fluorescent microwave fields from \emph{continuously-driven} circuit
QED systems. The calculations include the effects of the finite bandwidth of
the detection scheme. In both cases, the signature of two-photon quantum
interference is a suppression of the second-order cross-correlation function
for small delays. The experiment described in Ref.
\onlinecite{lang:microwaveHOM} was performed with trains of \emph{Lorentzian}
single photons, and very good agreement between the calculations and the
experimental data was obtained.Comment: 11 pages, 3 figure
Observation of topological Uhlmann phases with superconducting qubits
Topological insulators and superconductors at finite temperature can be
characterized by the topological Uhlmann phase. However, a direct experimental
measurement of this invariant has remained elusive in condensed matter systems.
Here, we report a measurement of the topological Uhlmann phase for a
topological insulator simulated by a system of entangled qubits in the IBM
Quantum Experience platform. By making use of ancilla states, otherwise
unobservable phases carrying topological information about the system become
accessible, enabling the experimental determination of a complete phase diagram
including environmental effects. We employ a state-independent measurement
protocol which does not involve prior knowledge of the system state. The
proposed measurement scheme is extensible to interacting particles and
topological models with a large number of bands.Comment: RevTex4 file, color figure
Experimental Monte Carlo Quantum Process Certification
Experimental implementations of quantum information processing have now
reached a level of sophistication where quantum process tomography is
impractical. The number of experimental settings as well as the computational
cost of the data post-processing now translates to days of effort to
characterize even experiments with as few as 8 qubits. Recently a more
practical approach to determine the fidelity of an experimental quantum process
has been proposed, where the experimental data is compared directly to an ideal
process using Monte Carlo sampling. Here we present an experimental
implementation of this scheme in a circuit quantum electrodynamics setup to
determine the fidelity of two qubit gates, such as the cphase and the cnot
gate, and three qubit gates, such as the Toffoli gate and two sequential cphase
gates
Driving Rydberg-Rydberg transitions from a co-planar microwave waveguide
The coherent interaction between ensembles of helium Rydberg atoms and
microwave fields in the vicinity of a solid-state co-planar waveguide is
reported. Rydberg-Rydberg transitions, at frequencies between 25 GHz and 38
GHz, have been studied for states with principal quantum numbers in the range
30 - 35 by selective electric-field ionization. An experimental apparatus
cooled to 100 K was used to reduce effects of blackbody radiation.
Inhomogeneous, stray electric fields emanating from the surface of the
waveguide have been characterized in frequency- and time-resolved measurements
and coherence times of the Rydberg atoms on the order of 250 ns have been
determined.Comment: 5 pages, 5 figure
Imaging electric fields in the vicinity of cryogenic surfaces using Rydberg atoms
The ability to characterize static and time-dependent electric fields in situ
is an important prerequisite for quantum-optics experiments with atoms close to
surfaces. Especially in experiments which aim at coupling Rydberg atoms to the
near field of superconducting circuits, the identification and subsequent
elimination of sources of stray fields is crucial. We present a technique that
allows the determination of stray-electric-field distributions
at distances of less than from (cryogenic) surfaces using
coherent Rydberg-Stark spectroscopy in a pulsed supersonic beam of metastable
helium atoms. We demonstrate the
capabilities of this technique by characterizing the electric stray field
emanating from a structured superconducting surface. Exploiting coherent
population transfer with microwave radiation from a coplanar waveguide, the
same technique allows the characterization of the microwave-field distribution
above the surface.Comment: 6 pages, 4 figure
- …
