17 research outputs found

    A role for central spindle proteins in cilia structure and function

    No full text
    Cytokinesis and ciliogenesis are fundamental cellular processes that require strict coordination of microtubule organization and directed membrane trafficking. These processes have been intensely studied, but there has been little indication that regulatory machinery might be extensively shared between them. Here, we show that several central spindle/midbody proteins (PRC1, MKLP-1, INCENP, centriolin) also localize in specific patterns at the basal body complex in vertebrate ciliated epithelial cells. Moreover, bioinformatic comparisons of midbody and cilia proteomes reveal a highly significant degree of overlap. Finally, we used temperature-sensitive alleles of PRC1/spd-1 and MKLP-1/zen-4 in C. elegans to assess ciliary functions while bypassing these proteins' early role in cell division. These mutants displayed defects in both cilia function and cilia morphology. Together, these data suggest the conserved reuse of a surprisingly large number of proteins in the cytokinetic apparatus and in cilia

    Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds

    No full text
    Pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner

    Neural tube closure requires the endocytic receptor Lrp2 and its functional interaction with intracellular scaffolds

    No full text
    Recent studies have revealed that pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss-of-function (LOF) impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction as well as PCP component trafficking in a temporospatial manner

    Calcium dynamics integrated into signalling pathways that influence vertebrate axial patterning

    No full text
    Many aspects of animal development including fertilization as well as organ formation and function are dependent upon the dynamic release of calcium (Ca2+) ions. Although the controlled release and/or accumulation of Ca2+ ions has been extensively studied, how the release dynamics produce a specific biological output in embryonic development is less clear. We will briefly summarize Ca2+ sources, highlight data on endogenous Ca2+ release in vertebrate embryos relevant to body plan formation and cell movement, and integrate pharmacological and molecular-genetic studies to lend insight into the signalling pathways involved. Finally, based on in vivo imaging in zebrafish genetic mutants, we will put forward the model that distinct Ca2+ release dynamics lead to antagonism of the developmentally important Wnt/β-catenin signalling pathway, while sustained Ca2+ release modulates cell polarization or directed migration
    corecore