2,226 research outputs found

    The Effect of Columnar Disorder on the Superconducting Transition of a Type-II Superconductor in Zero Applied Magnetic Field

    Full text link
    We investigate the effect of random columnar disorder on the superconducting phase transition of a type-II superconductor in zero applied magnetic field using numerical simulations of three dimensional XY and vortex loop models. We consider both an unscreened model, in which the bare magnetic penetration length is approximated as infinite, and a strongly screened model, in which the magnetic penetration length is of order the vortex core radius. We consider both equilibrium and dynamic critical exponents. We show that, as in the disorder free case, the equilibrium transitions of the unscreened and strongly screened models lie in the same universality class, however scaling is now anisotropic. We find for the correlation length exponent ν=1.2±0.1\nu=1.2\pm 0.1, and for the anisotropy exponent ζ=1.3±0.1\zeta=1.3\pm 0.1. We find different dynamic critical exponents for the unscreened and strongly screened models.Comment: 30 pages 12 ps figure

    Testing Gravity in the Outer Solar System: Results from Trans-Neptunian Objects

    Full text link
    The inverse square law of gravity is poorly probed by experimental tests at distances of ~ 10 AUs. Recent analysis of the trajectory of the Pioneer 10 and 11 spacecraft have shown an unmodeled acceleration directed toward the Sun which was not explained by any obvious spacecraft systematics, and occurred when at distances greater than 20 AUs from the Sun. If this acceleration represents a departure from Newtonian gravity or is indicative of an additional mass distribution in the outer solar system, it should be detectable in the orbits of Trans-Neptunian Objects (TNOs). To place limits on deviations from Newtonian gravity, we have selected a well observed sample of TNOs found orbiting between 20 and 100 AU from the Sun. By examining their orbits with modified orbital fitting software, we place tight limits on the perturbations of gravity that could exist in this region of the solar system.Comment: 20 pages, 4 figures, 2 tables, uses AASTex v5.x macro

    Force generation in small ensembles of Brownian motors

    Full text link
    The motility of certain gram-negative bacteria is mediated by retraction of type IV pili surface filaments, which are essential for infectivity. The retraction is powered by a strong molecular motor protein, PilT, producing very high forces that can exceed 150 pN. The molecular details of the motor mechanism are still largely unknown, while other features have been identified, such as the ring-shaped protein structure of the PilT motor. The surprisingly high forces generated by the PilT system motivate a model investigation of the generation of large forces in molecular motors. We propose a simple model, involving a small ensemble of motor subunits interacting through the deformations on a circular backbone with finite stiffness. The model describes the motor subunits in terms of diffusing particles in an asymmetric, time-dependent binding potential (flashing ratchet potential), roughly corresponding to the ATP hydrolysis cycle. We compute force-velocity relations in a subset of the parameter space and explore how the maximum force (stall force) is determined by stiffness, binding strength, ensemble size, and degree of asymmetry. We identify two qualitatively different regimes of operation depending on the relation between ensemble size and asymmetry. In the transition between these two regimes, the stall force depends nonlinearly on the number of motor subunits. Compared to its constituents without interactions, we find higher efficiency and qualitatively different force-velocity relations. The model captures several of the qualitative features obtained in experiments on pilus retraction forces, such as roughly constant velocity at low applied forces and insensitivity in the stall force to changes in the ATP concentration.Comment: RevTex 9 pages, 4 figures. Revised version, new subsections in Sec. III, removed typo

    Monte Carlo calculation of the current-voltage characteristics of a two dimensional lattice Coulomb gas

    Full text link
    We have studied the nonlinear current-voltage characteristic of a two dimensional lattice Coulomb gas by Monte Carlo simulation. We present three different determinations of the power-law exponent a(T)a(T) of the nonlinear current-voltage characteristic, VIa(T)+1V \sim I^{a(T)+1}. The determinations rely on both equilibrium and non-equilibrium simulations. We find good agreement between the different determinations, and our results also agree closely with experimental results for Hg-Xe thin film superconductors and for certain single crystal thin-film high temperature superconductors.Comment: late

    Can Minor Planets be Used to Assess Gravity in the Outer Solar System?

    Full text link
    The twin Pioneer spacecraft have been tracked for over thirty years as they headed out of the solar system. After passing 20 AU from the Sun, both exhibited a systematic error in their trajectories that can be interpreted as a constant acceleration towards the Sun. This Pioneer Effect is most likely explained by spacecraft systematics, but there have been no convincing arguments that that is the case. The alternative is that the Pioneer Effect represents a real phenomenon and perhaps new physics. What is lacking is a means of measuring the effect, its variation, its potential anisotropies, and its region of influence. We show that minor planets provide an observational vehicle for investigating the gravitational field in the outer solar system, and that a sustained observation campaign against properly chosen minor planets could confirm or refute the existence of the Pioneer Effect. Additionally, even if the Pioneer Effect does not represent a new physical phenomenon, minor planets can be used to probe the gravitational field in the outer Solar System and since there are very few intermediate range tests of gravity at the multiple AU distance scale, this is a worthwhile endeavor in its own right.Comment: Accepted for publication in The Astrophysical Journa

    Gravitational solution to the Pioneer 10/11 anomaly

    Full text link
    A fully relativistic modified gravitational theory including a fifth force skew symmetric field is fitted to the Pioneer 10/11 anomalous acceleration. The theory allows for a variation with distance scales of the gravitational constant G, the fifth force skew symmetric field coupling strength omega and the mass of the skew symmetric field mu=1/lambda. A fit to the available anomalous acceleration data for the Pioneer 10/11 spacecraft is obtained for a phenomenological representation of the "running" constants and values of the associated parameters are shown to exist that are consistent with fifth force experimental bounds. The fit to the acceleration data is consistent with all current satellite, laser ranging and observations for the inner planets.Comment: 14 pages, 3 figures, 3 tables. typo's were corrected at Equations (4) and (12) and a third table including our predictions for the anomalous perihelion advance of the planets was adde

    Vortex glass transition in a random pinning model

    Full text link
    We study the vortex glass transition in disordered high temperature superconductors using Monte Carlo simulations. We use a random pinning model with strong point-correlated quenched disorder, a net applied magnetic field, longrange vortex interactions, and periodic boundary conditions. From a finite size scaling study of the helicity modulus, the RMS current, and the resistivity, we obtain critical exponents at the phase transition. The new exponents differ substantially from those of the gauge glass model, but are consistent with those of the pure three-dimensional XY model.Comment: 7 pages RevTeX, 4 eps figure

    Resistance scaling at the Kosterlitz-Thouless transition

    Full text link
    We study the linear resistance at the Kosterlitz-Thouless transition by Monte Carlo simulation of vortex dynamics. Finite size scaling analysis of our data show excellent agreement with scaling properties of the Kosterlitz-Thouless transition. We also compare our results for the linear resistance with experiments. By adjusting the vortex chemical potential to an optimum value, the resistance at temperatures above the transition temperature agrees well with experiments over many decades.Comment: 7 pages, 4 postscript figures included, LATEX, KTH-CMT-94-00

    Interaction between clients and physiotherapists in group exercise classes in geriatric rehabilitation

    Get PDF
    The aim of this paper is to explore how older people construct their interaction in group exercise classes in geriatric rehabilitation and what is their contribution to the interaction. Discourse analysis was employed and data, consisting of seven videotaped group-based exercise sessions, were collected from 52 older people (aged 66–93 years) and nine rehabilitation professionals in seven rehabilitation centres. Four discourse categories were found. In “taciturn exercising”, older people remained verbally silent but physically active. In “submissive disagreeing”, older people opposed the professionals’ agenda by displaying reluctant consent to proposals. In “resilient endeavouring”, older adults persisted on their course of action, regardless of the disapproval of the professionals. In “lay helping”, older people initiated spontaneous encouragement, but also gave verbal and physical assistance to their peers. Older people's meaningful contribution to interaction, whilst it may challenge the institutional flow of activities, can constitute an integral part of the re-ablement process of rehabilitation

    Absence of a Phase Transition in a Three--Dimensional Vortex Glass Model with Screening

    Full text link
    We study the gauge glass model for the vortex glass transition in type--II superconductors, including screening of the interaction between vortices. {}From the size dependence of the domain wall energy we find that, in two--dimensions, the transition is at T=0T=0 both with and without screening but the exponents are different in the two cases. In three-dimensions, we find that screening destroys the finite temperature transition found earlier when screening was neglected.Comment: 11 pages plus LaTeX with Revtex macros, 3 postscript figures, uuencoded and compressse
    corecore