47 research outputs found

    Patient's needs and preferences in routine follow-up after treatment for breast cancer

    Get PDF
    The purpose of the study was to analyse the needs of women who participated in a routine follow-up programme after treatment for primary breast cancer. A cross-sectional survey was conducted using a postal questionnaire among women without any sign of relapse during the routine follow-up period. The questionnaire was sent 2-4 years after primary surgical treatment. Most important to patients was information on long-term effects of treatment and prognosis, discussion of prevention of breast cancer and hereditary factors and changes in the untreated breast. Patients preferred additional investigations (such as X-ray and blood tests) to be part of routine follow-up visits. Less satisfaction with interpersonal aspects and higher scores on the Hospital Anxiety and Depression Scale (HADS) scale were related to stronger preferences for additional investigation. Receiving adjuvant hormonal or radiotherapy was related to a preference for a more intensive follow-up schedule. There were no significant differences between patients treated with mastectomy compared to treated with breast-conserving therapy. During routine follow-up after a diagnosis of breast cancer, not all patients needed all types of information. When introducing alternative follow-up schedules, individual patients' information needs and preferences should be identified early and incorporated into the follow-up routine care, to target resources and maximise the likelihood that positive patient outcomes will result

    Notch Ankyrin Repeat Domain Variation Influences Leukemogenesis and Myc Transactivation

    Get PDF
    , cell-based and structural analyses to compare the abilities of activated Notch1-4 to support T cell development, induce T cell acute lymphoblastic leukemia/lymphoma (T-ALL), and maintain T-ALL cell growth and survival., a direct Notch target that has an important role in Notch-associated T-ALL.We conclude that the leukemogenic potentials of Notch receptors vary, and that this functional difference stems in part from divergence among the highly conserved ankyrin repeats, which influence the transactivation of specific target genes involved in leukemogenesis

    Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology

    Get PDF
    Skeletal muscle is an organ involved in whole body movement and energy metabolism with the ability to dynamically adapt to different states of (dis-)use. At a molecular level, the peroxisome proliferator-activated receptor Îł coactivators 1 (PGC-1s) are important mediators of oxidative metabolism in skeletal muscle and in other organs. Musculoskeletal disorders as well as obesity and its sequelae are associated with PGC-1 dysregulation in muscle with a concomitant local or systemic inflammatory reaction. In this review, we outline the function of PGC-1 coactivators in physiological and pathological conditions as well as the complex interplay of metabolic dysregulation and inflammation in obesity with special focus on skeletal muscle. We further put forward the hypothesis that, in this tissue, oxidative metabolism and inflammatory processes mutually antagonize each other. The nuclear factor ÎșB (NF-ÎșB) pathway thereby plays a key role in linking metabolic and inflammatory programs in muscle cells. We conclude this review with a perspective about the consequences of such a negative crosstalk on the immune system and the possibilities this opens for clinical applications

    Fertility preservation in women with cervical, endometrial or ovarian cancers

    No full text

    Adrenaline potentiates insulin-stimulated PKB activation in the rat fast-twitch epitrochlearis muscle without affecting IRS-1-associated PI 3-kinase activity

    No full text
    We have previously shown in the rat slow-twitch soleus muscle that adrenaline greatly potentiates insulin-stimulated protein kinase B (PKB) phosphorylation without having an effect alone. However, insulin signalling capacity through the PKB pathway is higher in soleus than in fast-twitch muscles, whereas adrenaline activates phosphorylase more strongly in epitrochlearis. Therefore, the aim of the present study was to investigate the interaction between adrenaline and insulin signalling in the fast-twitch epitrochlearis muscle. Insulin increased insulin receptor substrate-1 (IRS-1)-associated phosphoinositide (PI) 3-kinase activity threefold, and adrenaline did not influence basal or insulin-stimulated PI 3-kinase activity. Insulin but not adrenaline increased PKB activity and phosphorylation of Ser473 and Thr308. It is interesting to note that adrenaline potentiated insulin-stimulated PKB activity and PKB Ser473 and Thr308 phosphorylation. These effects were mimicked by dibutyryl-cyclic adenosine monophosphate (db-cAMP). Adrenaline and db-cAMP increased glycogen synthase kinase (GSK)-3ÎČ Ser9 phosphorylation independently of PKB activation and enhanced insulin-stimulated GSK-3ÎČ Ser9 phosphorylation. Although adrenaline increased GSK-3 phosphorylation (inhibiting activity), phosphorylation of its target sites on glycogen synthase was increased, and adrenaline blocked insulin-stimulated glycogen synthase dephosphorylation of Ser641 and Ser645,649,653,657, glycogen synthase activation and glycogen synthesis. Insulin-stimulated glucose transport was not influenced by adrenaline despite the increased PKB activation. In conclusion, as in the slow-twitch soleus muscle, adrenaline potentiates insulin-stimulated PKB activation in the fast-twitch glycolytic epitrochlearis muscle without increasing IRS-1-associated PI 3-kinase activity. Furthermore, adrenaline induces phosphorylation of a pool of GSK-3 that is not involved in the regulation of glycogen metabolism. These results indicate that the combination of adrenaline and insulin may activate novel signalling molecules rather than just summing up their effects on linear pathways
    corecore