273 research outputs found

    Разработка модели контейнера для сбора компактных люминесцентных ламп

    Get PDF
    Предложена конструкция контейнера для сбора у населения компактных люминесцентных ламп. Разработан и создан демонстрационный макет контейнера. Проверена его работоспособность.A container design is proposed for collecting compact fluorescent lamps from the city residents. A demonstration mock-up of the container was developed and created. It is checked up its working capacity

    Urinary metabolomics reveals glycemic and coffee associated signatures of thyroid function in two population-based cohorts

    Get PDF
    Triiodothyronine (T3) and thyroxine (T4) as the main secretion products of the thyroid affect nearly every human tissue and are involved in a broad range of processes ranging from energy expenditure and lipid metabolism to glucose homeostasis. Metabolomics studies outside the focus of clinical manifest thyroid diseases are rare. The aim of the present investigation was to analyze the cross-sectional and longitudinal associations of urinary metabolites with serum free T4 (FT4) and thyroid-stimulating hormone (TSH).Urine Metabolites of participants of the population-based studies Inter99 (n = 5620) and Health2006/Health2008 (n = 3788) were analyzed by 1H-NMR spectroscopy. Linear or mixed linear models were used to detect associations between urine metabolites and thyroid function.Cross-sectional analyses revealed positive relations of alanine, trigonelline and lactic acid with FT4 and negative relations of dimethylamine, glucose, glycine and lactic acid with log(TSH). In longitudinal analyses, lower levels of alanine, dimethylamine, glycine, lactic acid and N,N-dimethylglycine were linked to a higher decline in FT4 levels over time, whereas higher trigonelline levels were related to a higher FT4 decline. Moreover, the risk of hypothyroidism was higher in subjects with high baseline trigonelline or low lactic acid, alanine or glycine values.The detected associations mainly emphasize the important role of thyroid hormones in glucose homeostasis. In addition, the predictive character of these metabolites might argue for a potential feedback of the metabolic state on thyroid function. Besides known metabolic consequences of TH, the link to the urine excretion of trigonelline, a marker of coffee consumption, represents a novel finding of this study and given the ubiquitous consumption of coffee requires further research

    Association Analysis of Ten Candidate Genes in a Large Multinational Cohort of Small for Gestational Age Children and Children with Idiopathic Short Stature (NESTEGG study)

    Get PDF
    Background: Fetal growth failure has been associated with an increased risk of hypertension, cardiovascular disease and diabetes in adulthood. Exploring the mechanisms underlying this association should improve our understanding of these common adult diseases. Patients and Methods: We investigated 225 SNPs in 10 genes involved in growth and glucose metabolism (GH1, GHR, IGF1, IGF1R, STAT5A, STAT5B, MAPK1, MAPK3, PPARγ and INS) in 1,437 children from the multinational NESTEGG consortium: 345 patients born small for gestational age who remained short (SGA-S), 288 who showed catch-up growth (SGA-Cu), 410 idiopathic short stature (ISS) and 394 controls. We related genotype to pre- and/or postnatal growth parameters, response to growth hormone (if applicable) and blood pressure. Results: We found several clinical associations for GH1, GHR, IGF1, IGF1R, PPARγ and MAPK1. One SNP remained significant after Bonferroni's correction: IGF1R SNP rs4966035's minor allele A was significantly more prevalent among SGA and associated with smaller birth length (p = 0.000378) and birth weight (weaker association), independent of gestational age. Conclusion:IGF1R SNP rs4966035 is significantly associated with birth length, independent of gestational age. This and other associations suggest that polymorphisms in these genes might partly explain the phenotype of short children born SGA and children with ISS

    Physiological Aldosterone Concentrations Are Associated with Alterations of Lipid Metabolism: Observations from the General Population

    Get PDF
    Objective. Aldosterone and high-density lipoprotein cholesterol (HDL-C) are involved in many pathophysiological processes that contribute to the development of cardiovascular diseases. Previously, associations between the concentrations of aldosterone and certain components of the lipid metabolism in the peripheral circulation were suggested, but data from the general population is sparse. We therefore aimed to assess the associations between aldosterone and HDL-C, low-density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, or non-HDL-C in the general adult population. Methods. Data from 793 men and 938 women aged 25-85 years who participated in the first follow-up of the Study of Health in Pomerania were obtained. The associations of aldosterone with serum lipid concentrations were assessed in multivariable linear regression models adjusted for sex, age, body mass index (BMI), estimated glomerular filtration rate (eGFR), and HbA1c. Results. The linear regression models showed statistically significant positive associations of aldosterone with LDL-C (beta-coefficient = 0.022, standard error = 0.010, p = 0.03) and non-HDL-C (beta-coefficient = 0.023, standard error = 0.009, p = 0.01) as well as an inverse association of aldosterone with HDL-C (beta-coefficient = -0.022, standard error = 0.011, p = 0.04). Conclusions. The present data show that plasma aldosterone is positively associated with LDL-C and non-HDL-C and inversely associated with HDL-C in the general population. Our data thus suggests that aldosterone concentrations within the physiological range may be related to alterations of lipid metabolism

    A SULT2A1 genetic variant identified by GWAS as associated with low serum DHEAS does not impact on the actual DHEA/DHEAS ratio

    Get PDF
    DHEA is the major precursor of human sex steroid synthesis and is inactivated via sulfonation to DHEAS. A previous genome-wide association study related the single nucleotide polymorphism (SNP) rs2637125, located near the coding region of DHEA sulfotransferase, SULT2A1, to serum DHEAS concentrations. However, the functional relevance of this SNP with regard to DHEA sulfonation is unknown. Using data from 3300 participants of the population-based cohort Study of Health in Pomerania, we identified 43 individuals being homozygote for the minor allele of the SNP rs2637125 (AA) and selected two sex- and age-matched individuals with AG and GG genotype (n=172) respectively. Steroid analysis including measurement of serum DHEA and DHEAS was carried out by liquid chromatography/mass spectrometry, employing steroid oxime analysis for enhancing the sensitivity of DHEA detection. We applied quantile regression models to compare median hormone levels across SULT2A1 genotypes. Median comparisons by SULT2A1 genotype (AA vs AG and GG genotypes respectively) showed no differences in the considered hormones including DHEAS, DHEA, androstenedione, as well as cortisol and cortisone concentrations. SULT2A1 genotype also had no effect on the DHEA/DHEAS ratio. Sex-stratified analyses, as well as alternative use of the SULT2A1 SNP rs182420, yielded similar negative results. Genetic variants of SULT2A1 do not appear to have an effect on individual DHEA and DHEAS concentrations or the DHEA/DHEAS ratio as a marker of DHEA sulfonation capacity

    Genome-Wide Association Study with Targeted and Non-targeted NMR Metabolomics Identifies 15 Novel Loci of Urinary Human Metabolic Individuality

    Get PDF
    Genome-wide association studies with metabolic traits (mGWAS) uncovered many genetic variants that influence human metabolism. These genetically influenced metabotypes (GIMs) contribute to our metabolic individuality, our capacity to respond to environmental challenges, and our susceptibility to specific diseases. While metabolic homeostasis in blood is a well investigated topic in large mGWAS with over 150 known loci, metabolic detoxification through urinary excretion has only been addressed by few small mGWAS with only 11 associated loci so far. Here we report the largest mGWAS to date, combining targeted and non-targeted 1H NMR analysis of urine samples from 3,861 participants of the SHIP-0 cohort and 1,691 subjects of the KORA F4 cohort. We identified and replicated 22 loci with significant associations with urinary traits, 15 of which are new (HIBCH, CPS1, AGXT, XYLB, TKT, ETNPPL, SLC6A19, DMGDH, SLC36A2, GLDC, SLC6A13, ACSM3, SLC5A11, PNMT, SLC13A3). Two-thirds of the urinary loci also have a metabolite association in blood. For all but one of the 6 loci where significant associations target the same metabolite in blood and urine, the genetic effects have the same direction in both fluids. In contrast, for the SLC5A11 locus, we found increased levels of myo-inositol in urine whereas mGWAS in blood reported decreased levels for the same genetic variant. This might indicate less effective re-absorption of myo-inositol in the kidneys of carriers. In summary, our study more than doubles the number of known loci that influence urinary phenotypes. It thus allows novel insights into the relationship between blood homeostasis and its regulation through excretion. The newly discovered loci also include variants previously linked to chronic kidney disease (CPS1, SLC6A13), pulmonary hypertension (CPS1), and ischemic stroke (XYLB). By establishing connections from gene to disease via metabolic traits our results provide novel hypotheses about molecular mechanisms involved in the etiology of diseases

    High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago

    Get PDF
    Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base

    Effects of smoking and smoking cessation on human serum metabolite profile: results from the KORA cohort study

    Get PDF
    Background: Metabolomics helps to identify links between environmental exposures and intermediate biomarkers of disturbed pathways. We previously reported variations in phosphatidylcholines in male smokers compared with non-smokers in a cross-sectional pilot study with a small sample size, but knowledge of the reversibility of smoking effects on metabolite profiles is limited. Here, we extend our metabolomics study with a large prospective study including female smokers and quitters. Methods: Using targeted metabolomics approach, we quantified 140 metabolite concentrations for 1,241 fasting serum samples in the population-based Cooperative Health Research in the Region of Augsburg (KORA) human cohort at two time points: baseline survey conducted between 1999 and 2001 and follow-up after seven years. Metabolite profiles were compared among groups of current smokers, former smokers and never smokers, and were further assessed for their reversibility after smoking cessation. Changes in metabolite concentrations from baseline to the follow-up were investigated in a longitudinal analysis comparing current smokers, never smokers and smoking quitters, who were current smokers at baseline but former smokers by the time of follow-up. In addition, we constructed protein-metabolite networks with smoking-related genes and metabolites. Results: We identified 21 smoking-related metabolites in the baseline investigation (18 in men and six in women, with three overlaps) enriched in amino acid and lipid pathways, which were significantly different between current smokers and never smokers. Moreover, 19 out of the 21 metabolites were found to be reversible in former smokers. In the follow-up study, 13 reversible metabolites in men were measured, of which 10 were confirmed to be reversible in male quitters. Protein-metabolite networks are proposed to explain the consistent reversibility of smoking effects on metabolites. Conclusions: We showed that smoking-related changes in human serum metabolites are reversible after smoking cessation, consistent with the known cardiovascular risk reduction. The metabolites identified may serve as potential biomarkers to evaluate the status of smoking cessation and characterize smoking-related diseases
    corecore