9,938 research outputs found

    Instant Two-Body Equation in Breit Frame

    Get PDF
    A quasipotential formalism for elastic scattering from relativistic bound states is based on applying an instant constraint to both initial and final states in the Breit frame. This formalism is advantageous for the analysis of electromagnetic interactions because current conservation and four momentum conservation are realized within a three-dimensional formalism. Wave functions are required in a frame where the total momentum is nonzero, which means that the usual partial wave analysis is inapplicable. In this work, the three-dimensional equation is solved numerically, taking into account the relevant symmetries. A dynamical boost of the interaction also is needed for the instant formalism, which in general requires that the boosted interaction be defined as the solution of a four-dimensional equation. For the case of a scalar separable interaction, this equation is solved and the Lorentz invariance of the three-dimensional formulation using the boosted interaction is verified. For more realistic interactions, a simple approximation is used to characterize the boost of the interaction.Comment: 20 pages in revtex 3, 3 figures. Fixed reform/tex errors

    Anisotropy of graphite optical conductivity

    Full text link
    The graphite conductivity is evaluated for frequencies between 0.1 eV, the energy of the order of the electron-hole overlap, and 1.5 eV, the electron nearest hopping energy. The in-plane conductivity per single atomic sheet is close to the universal graphene conductivity e2/4ℏe^2/4\hbar and, however, contains a singularity conditioned by peculiarities of the electron dispersion. The conductivity is less in the c−c-direction by the factor of the order of 0.01 governed by electron hopping in this direction.Comment: 3 pages, 3 figure

    Speckle noise and dynamic range in coronagraphic images

    Full text link
    This paper is concerned with the theoretical properties of high contrast coronagraphic images in the context of exoplanet searches. We derive and analyze the statistical properties of the residual starlight in coronagraphic images, and describe the effect of a coronagraph on the speckle and photon noise. Current observations with coronagraphic instruments have shown that the main limitations to high contrast imaging are due to residual quasi-static speckles. We tackle this problem in this paper, and propose a generalization of our statistical model to include the description of static, quasi-static and fast residual atmospheric speckles. The results provide insight into the effects on the dynamic range of wavefront control, coronagraphy, active speckle reduction, and differential speckle calibration. The study is focused on ground-based imaging with extreme adaptive optics, but the approach is general enough to be applicable to space, with different parameters.Comment: 31 pages, 18 figure

    Dynamics of monatomic liquids

    Full text link
    We present a theory of the dynamics of monatomic liquids built on two basic ideas: (1) The potential surface of the liquid contains three classes of intersecting nearly-harmonic valleys, one of which (the ``random'' class) vastly outnumbers the others and all whose members have the same depth and normal mode spectrum; and (2) the motion of particles in the liquid can be decomposed into oscillations in a single many-body valley, and nearly instantaneous inter-valley transitions called transits. We review the thermodynamic data which led to the theory, and we discuss the results of molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which support the theory in more detail. Then we apply the theory to problems in equilibrium and nonequilibrium statistical mechanics, and we compare the results to experimental data and MD simulations. We also discuss our work in comparison with the QNM and INM research programs and suggest directions for future research.Comment: 53 pages, 16 figures. Differs from published version in using American English spelling and grammar (published version uses British English

    Relativistic quasipotential equations with u-channel exchange interactions

    Get PDF
    Various quasipotential two-body scattering equations are studied at the one-loop level for the case of tt- and uu-channel exchange potentials. We find that the quasipotential equations devised to satisfy the one-body limit for the tt-channel exchange potential can be in large disagreement with the field-theoretical prediction in the case of uu-channel exchange interactions. Within the spectator model, the description of the uu-channel case improves if another choice of the spectator particle is made. Since the appropriate choice of the spectator depends strongly on the type of interaction used, one faces a problem when both types of interaction are contained in the potential. Equal-time formulations are presented, which, in the light-heavy particle system corresponding to the mass situation of the πN\pi N system, approximate in a reasonable way the field-theoretical result for both types of interactions.Comment: Revtex, 20 pages, 12 PostScript figures, to appear in Phys. Rev.

    Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy

    Full text link
    It is shown that the integrable discrete Schwarzian KP (dSKP) equation which constitutes an algebraic superposition formula associated with, for instance, the Schwarzian KP hierarchy, the classical Darboux transformation and quasi-conformal mappings encapsulates nothing but a fundamental theorem of ancient Greek geometry. Thus, it is demonstrated that the connection with Menelaus' theorem and, more generally, Clifford configurations renders the dSKP equation a natural object of inversive geometry on the plane. The geometric and algebraic integrability of dSKP lattices and their reductions to lattices of Menelaus-Darboux, Schwarzian KdV, Schwarzian Boussinesq and Schramm type is discussed. The dSKP and discrete Schwarzian Boussinesq equations are shown to represent discretizations of families of quasi-conformal mappings.Comment: 26 pages, 9 figure

    The Wisconsin Plasma Astrophysics Laboratory

    Full text link
    The Wisconsin Plasma Astrophysics Laboratory (WiPAL) is a flexible user facility designed to study a range of astrophysically relevant plasma processes as well as novel geometries that mimic astrophysical systems. A multi-cusp magnetic bucket constructed from strong samarium cobalt permanent magnets now confines a 10 m3^3, fully ionized, magnetic-field free plasma in a spherical geometry. Plasma parameters of Te≈5 T_{e}\approx5 to 2020 eV and ne≈1011n_{e}\approx10^{11} to 5×10125\times10^{12} cm−3^{-3} provide an ideal testbed for a range of astrophysical experiments including self-exciting dynamos, collisionless magnetic reconnection, jet stability, stellar winds, and more. This article describes the capabilities of WiPAL along with several experiments, in both operating and planning stages, that illustrate the range of possibilities for future users.Comment: 21 pages, 12 figures, 2 table

    Electron-deuteron scattering in a current-conserving description of relativistic bound states: formalism and impulse approximation calculations

    Get PDF
    The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions using an equal-time (ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a three-dimensional form by integrating out the time components of relative momenta. A conserved electromagnetic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic current and the NNNN interaction kernel may be made, order-by-order in the coupling constants, such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of the NNNN interaction is used to calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of the deuteron's vertex function and retardation effects in the meson-exchange interaction are found to have only minor effects on the deuteron form factors.Comment: 42 pages, RevTe

    Relativistic bound-state equations in three dimensions

    Get PDF
    Firstly, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-dimensional ones. Unlike ``quasi-potential approaches'' this procedure does not involve the use of delta-function constraints on the relative four-momentum. In the absence of negative-energy states, the kernels of the three-dimensional equations derived by this technique may be represented as sums of time-ordered perturbation theory diagrams. Consequently, such equations have two major advantages over quasi-potential equations: they may easily be written down in any Lorentz frame, and they include the meson-retardation effects present in the original four-dimensional equation. Secondly, a simple four-dimensional equation with the correct one-body limit is obtained by a reorganization of the generalized ladder Bethe-Salpeter kernel. Thirdly, our approach to deriving three-dimensional equations is applied to this four-dimensional equation, thus yielding a retarded interaction for use in the three-dimensional bound-state equation of Wallace and Mandelzweig. The resulting three-dimensional equation has the correct one-body limit and may be systematically improved upon. The quality of the three-dimensional equation, and our general technique for deriving such equations, is then tested by calculating bound-state properties in a scalar field theory using six different bound-state equations. It is found that equations obtained using the method espoused here approximate the wave functions obtained from their parent four-dimensional equations significantly better than the corresponding quasi-potential equations do.Comment: 28 pages, RevTeX, 6 figures attached as postscript files. Accepted for publication in Phys. Rev. C. Minor changes from original version do not affect argument or conclusion
    • 

    corecore