2,843 research outputs found
Rapid turnover of effector-memory CD4(+) T cells in healthy humans
Memory T cells can be divided into central-memory (T(CM)) and effector-memory (T(EM)) cells, which differ in their functional properties. Although both subpopulations can persist long term, it is not known whether they are maintained by similar mechanisms. We used in vivo labeling with deuterated glucose to measure the turnover of CD4(+) T cells in healthy humans. The CD45R0(+)CCR7(-) T(EM) subpopulation was shown to have a rapid proliferation rate of 4.7% per day compared with 1.5% per day for CD45R0(+)CCR7(+) T(CM) cells; these values are equivalent to average intermitotic (doubling) times of 15 and 48 d, respectively. In contrast, the CD45RA(+)CCR7(+) naive CD4(+) T cell population was found to be much longer lived, being labeled at a rate of only 0.2% per day (corresponding to an intermitotic time of approximately 1 yr). These data indicate that human CD4(+) T(EM) cells constitute a short-lived cell population that requires continuous replenishment in vivo
Accelerated in vivo proliferation of memory phenotype CD4+ T-cells in human HIV-1 infection irrespective of viral chemokine co-receptor tropism.
CD4(+) T-cell loss is the hallmark of HIV-1 infection. CD4 counts fall more rapidly in advanced disease when CCR5-tropic viral strains tend to be replaced by X4-tropic viruses. We hypothesized: (i) that the early dominance of CCR5-tropic viruses results from faster turnover rates of CCR5(+) cells, and (ii) that X4-tropic strains exert greater pathogenicity by preferentially increasing turnover rates within the CXCR4(+) compartment. To test these hypotheses we measured in vivo turnover rates of CD4(+) T-cell subpopulations sorted by chemokine receptor expression, using in vivo deuterium-glucose labeling. Deuterium enrichment was modeled to derive in vivo proliferation (p) and disappearance (d*) rates which were related to viral tropism data. 13 healthy controls and 13 treatment-naive HIV-1-infected subjects (CD4 143-569 cells/ul) participated. CCR5-expression defined a CD4(+) subpopulation of predominantly CD45R0(+) memory cells with accelerated in vivo proliferation (p = 2.50 vs 1.60%/d, CCR5(+) vs CCR5(-); healthy controls; P<0.01). Conversely, CXCR4 expression defined CD4(+) T-cells (predominantly CD45RA(+) naive cells) with low turnover rates. The dominant effect of HIV infection was accelerated turnover of CCR5(+)CD45R0(+)CD4(+) memory T-cells (p = 5.16 vs 2.50%/d, HIV vs controls; P<0.05), naïve cells being relatively unaffected. Similar patterns were observed whether the dominant circulating HIV-1 strain was R5-tropic (n = 9) or X4-tropic (n = 4). Although numbers were small, X4-tropic viruses did not appear to specifically drive turnover of CXCR4-expressing cells (p = 0.54 vs 0.72 vs 0.44%/d in control, R5-tropic, and X4-tropic groups respectively). Our data are most consistent with models in which CD4(+) T-cell loss is primarily driven by non-specific immune activation
Geographic access to high capability severe acute respiratory failure centers in the United States
Objective: Optimal care of adults with severe acute respiratory failure requires specific resources and expertise. We sought to measure geographic access to these centers in the United States. Design: Cross-sectional analysis of geographic access to high capability severe acute respiratory failure centers in the United States. We defined high capability centers using two criteria: (1) provision of adult extracorporeal membrane oxygenation (ECMO), based on either 2008-2013 Extracorporeal Life Support Organization reporting or provision of ECMO to 2010 Medicare beneficiaries; or (2) high annual hospital mechanical ventilation volume, based 2010 Medicare claims. Setting: Nonfederal acute care hospitals in the United States. Measurements and Main Results: We defined geographic access as the percentage of the state, region and national population with either direct or hospital-transferred access within one or two hours by air or ground transport. Of 4,822 acute care hospitals, 148 hospitals met our ECMO criteria and 447 hospitals met our mechanical ventilation criteria. Geographic access varied substantially across states and regions in the United States, depending on center criteria. Without interhospital transfer, an estimated 58.5% of the national adult population had geographic access to hospitals performing ECMO and 79.0% had geographic access to hospitals performing a high annual volume of mechanical ventilation. With interhospital transfer and under ideal circumstances, an estimated 96.4% of the national adult population had geographic access to hospitals performing ECMO and 98.6% had geographic access to hospitals performing a high annual volume of mechanical ventilation. However, this degree of geographic access required substantial interhospital transfer of patients, including up to two hours by air. Conclusions: Geographic access to high capability severe acute respiratory failure centers varies widely across states and regions in the United States. Adequate referral center access in the case of disasters and pandemics will depend highly on local and regional care coordination across political boundaries. © 2014 Wallace et al
The phonon theory of liquid thermodynamics
Heat capacity of matter is considered to be its most important property
because it holds information about system's degrees of freedom as well as the
regime in which the system operates, classical or quantum. Heat capacity is
well understood in gases and solids but not in the third state of matter,
liquids, and is not discussed in physics textbooks as a result. The perceived
difficulty is that interactions in a liquid are both strong and
system-specific, implying that the energy strongly depends on the liquid type
and that, therefore, liquid energy can not be calculated in general form. Here,
we develop a phonon theory of liquids where this problem is avoided. The theory
covers both classical and quantum regimes. We demonstrate good agreement of
calculated and experimental heat capacity of 21 liquids, including noble,
metallic, molecular and hydrogen-bonded network liquids in a wide range of
temperature and pressure.Comment: 7 pages, 4 figure
Mitochondrial DNA Polymorphism A4917G Is Independently Associated with Age-Related Macular Degeneration
The objective of this study was to determine if MTND2*LHON4917G (4917G), a specific non-synonymous polymorphism in the mitochondrial genome previously associated with neurodegenerative phenotypes, is associated with increased risk for age-related macular degeneration (AMD). A preliminary study of 393 individuals (293 cases and 100 controls) ascertained at Vanderbilt revealed an increased occurrence of 4917G in cases compared to controls (15.4% vs.9.0%, p = 0.11). Since there was a significant age difference between cases and controls in this initial analysis, we extended the study by selecting Caucasian pairs matched at the exact age at examination. From the 1547 individuals in the Vanderbilt/Duke AMD population association study (including 157 in the preliminary study), we were able to match 560 (280 cases and 280 unaffected) on exact age at examination. This study population was genotyped for 4917G plus specific AMD-associated nuclear genome polymorphisms in CFH, LOC387715 and ApoE. Following adjustment for the listed nuclear genome polymorphisms, 4917G independently predicts the presence of AMD (OR = 2.16, 95%CI 1.20–3.91, p = 0.01). In conclusion, a specific mitochondrial polymorphism previously implicated in other neurodegenerative phenotypes (4917G) appears to convey risk for AMD independent of recently discovered nuclear DNA polymorphisms
The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle
The temperature anomalies in the Earth's mantle associated with thermal
convection1 can be inferred from seismic tomography, provided that the elastic
properties of mantle minerals are known as a function of temperature at mantle
pressures. At present, however, such information is difficult to obtain
directly through laboratory experiments. We have therefore taken advantage of
recent advances in computer technology, and have performed finite-temperature
ab initio molecular dynamics simulations of the elastic properties of MgSiO3
perovskite, the major mineral of the lower mantle, at relevant thermodynamic
conditions. When combined with the results from tomographic images of the
mantle, our results indicate that the lower mantle is either significantly
anelastic or compositionally heterogeneous on large scales. We found the
temperature contrast between the coldest and hottest regions of the mantle, at
a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over
2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001
- …