12,810 research outputs found

    Structural characterization of YBa(2)Cu(3)O(7)/Y(2)O(3) composite films

    Full text link
    Using 4-circle x-ray diffraction and transmission electron microscopy we have studied the microstructure and in-plane orientation of the phases present in thin film composite mixtures of YBa(2)Cu(3)O(7) and Y(2)O(3). We see a high degree of in-plane orientation and have verified a previous prediction for the in-plane order of Y(2)BaCuO(5) on (110) MgO. Transmission electron microscopy shows the composite films to be a mixture of two phases, with YBCO grain sizes of 1 micron. We have also compared our observations of the in-plane order to the predictions of a modified near coincidence site lattice model.Comment: To be published in Journal of Materials Research, (4 pages, 4 jpeg figures

    The Deep Diffuse Extragalactic Radio Sky at 1.75 GHz

    Full text link
    We present a study of diffuse extragalactic radio emission at 1.75 1.75\,GHz from part of the ELAIS-S1 field using the Australia Telescope Compact Array. The resulting mosaic is 2.46 2.46\,deg2^2, with a roughly constant noise region of 0.61 0.61\,deg2^2 used for analysis. The image has a beam size of 150×60 150 \times60\,arcsec and instrumental ⟨σn⟩=(52±5) μ\langle\sigma_{\rm n}\rangle= (52\pm5)\, \muJy beam−1^{-1}. Using point-source models from the ATLAS survey, we subtract the discrete emission in this field for S≥150 μS \ge 150\, \muJy beam−1^{-1}. Comparison of the source-subtracted probability distribution, or \pd, with the predicted distribution from unsubtracted discrete emission and noise, yields an excess of (76±23) μ(76 \pm 23) \, \muJy beam−1^{-1}. Taking this as an upper limit on any extended emission we constrain several models of extended source counts, assuming Ωsource≤2 \Omega_{\rm source} \le 2\,arcmin. The best-fitting models yield temperatures of the radio background from extended emission of Tb=(10±7) T_{\rm b}=(10\pm7) \,mK, giving an upper limit on the total temperature at 1.75 1.75\,GHz of (73±10) (73\pm10)\,mK. Further modelling shows that our data are inconsistent with the reported excess temperature of ARCADE2 to a source-count limit of 1 μ1\, \muJy. Our new data close a loop-hole in the previous constraints, because of the possibility of extended emission being resolved out at higher resolution. Additionally, we look at a model of cluster halo emission and two WIMP dark matter annihilation source-count models, and discuss general constraints on any predicted counts from such sources. Finally, we report the derived integral count at 1.4 1.4\,GHz using the deepest discrete count plus our new extended-emission limits, providing numbers that can be used for planning future ultra-deep surveys.Comment: 18 pages, 15 figures, 7 tables, Accepted by MNRA

    A Catalogue of the wood type at Rochester Institute of Technology

    Get PDF
    None provided
    • …
    corecore