6,447 research outputs found

    Advanced flight control system study

    Get PDF
    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts

    Acute post-disaster medical needs of patients with diabetes: emergency department use in New York City by diabetic adults after Hurricane Sandy.

    Get PDF
    OBJECTIVE: To evaluate the acute impact of disasters on diabetic patients, we performed a geospatial analysis of emergency department (ED) use by New York City diabetic adults in the week after Hurricane Sandy. RESEARCH DESIGN AND METHODS: Using an all-payer claims database, we retrospectively analyzed the demographics, insurance status, and medical comorbidities of post-disaster ED patients with diabetes who lived in the most geographically vulnerable areas. We compared the patterns of ED use among diabetic adults in the first week after Hurricane Sandy\u27s landfall to utilization before the disaster in 2012. RESULTS: In the highest level evacuation zone in New York City, postdisaster increases in ED visits for a primary or secondary diagnosis of diabetes were attributable to a significantly higher proportion of Medicare patients. Emergency visits for a primary diagnosis of diabetes had an increased frequency of certain comorbidities, including hypertension, recent procedure, and chronic skin ulcers. Patients with a history of diabetes visited EDs in increased numbers after Hurricane Sandy for a primary diagnosis of myocardial infarction, prescription refills, drug dependence, dialysis, among other conditions. CONCLUSIONS: We found that diabetic adults aged 65 years and older are especially at risk for requiring postdisaster emergency care compared to other vulnerable populations. Our findings also suggest that there is a need to support diabetic adults particularly in the week after a disaster by ensuring access to medications, aftercare for patients who had a recent procedure, and optimize their cardiovascular health to reduce the risk of heart attacks

    Mesoscopic Effects in Quantum Phases of Ultracold Quantum Gases in Optical Lattices

    Full text link
    We present a wide array of quantum measures on numerical solutions of 1D Bose- and Fermi-Hubbard Hamiltonians for finite-size systems with open boundary conditions. Finite size effects are highly relevant to ultracold quantum gases in optical lattices, where an external trap creates smaller effective regions in the form of the celebrated "wedding cake" structure and the local density approximation is often not applicable. Specifically, for the Bose-Hubbard Hamiltonian we calculate number, quantum depletion, local von-Neumann entropy, generalized entanglement or Q-measure, fidelity, and fidelity susceptibility; for the Fermi-Hubbard Hamiltonian we also calculate the pairing correlations, magnetization, charge-density correlations, and antiferromagnetic structure factor. Our numerical method is imaginary time propagation via time-evolving block decimation. As part of our study we provide a careful comparison of canonical vs. grand canonical ensembles and Gutzwiller vs. entangled simulations. The most striking effect of finite size occurs for bosons: we observe a strong blurring of the tips of the Mott lobes accompanied by higher depletion, and show how the location of the first Mott lobe tip approaches the thermodynamic value as a function of system size.Comment: 13 pages, 10 figure

    3D Distribution of Molecular Gas in the Barred Milky Way

    Full text link
    We present a new model of the three-dimensional distribution of molecular gas in the Milky Way Galaxy, based on CO line data. Our analysis is based on a gas-flow simulation of the inner Galaxy using smoothed-particle hydrodynamics (SPH) using a realistic barred gravitional potential derived from the observed COBE/DIRBE near-IR light distribution. The gas model prescribes the gas orbits much better than a simple circular rotation model and is highly constrained by observations, but it cannot predict local details. In this study, we provide a 3D map of the observed molecular gas distribution using the velocity field from the SPH model. A comparison with studies of the Galactic Center region suggests that the main structures are reproduced but somewhat stretched along the line-of-sight, probably on account of limited resolution of the underlying SPH simulation. The gas model will be publicly available and may prove useful in a number of applications, among them the analysis of diffuse gamma-ray emission as measured with GLAST.Comment: ApJ in pres

    Influence of blade aerodynamic model on the prediction of helicopter high-frequency airloads

    Get PDF
    Brown’s vorticity transport model has been used to investigate the influence of the blade aerodynamic model on the accuracy with which the high-frequency airloads associated with helicopter blade–vortex interactions can be predicted. The model yields an accurate representation of the wake structure yet allows significant flexibility in the way that the blade loading can be represented. A simple lifting-line model and a somewhat more sophisticated liftingchord model, based on unsteady thin aerofoil theory, are compared. A marked improvement in the accuracy of the predicted high-frequency airloads of the higher harmonic control aeroacoustic rotor is obtained when the liftingchord model is used instead of the lifting-line approach, and the quality of the prediction is affected less by the computational resolution of the wake. The lifting-line model overpredicts the amplitude of the lift response to blade–vortex interactions as the computational grid is refined, exposing the fundamental deficiencies in this approach when modeling the aerodynamic response of the blade to interactions with vortices that are much smaller than its chord. The airloads that are predicted using the lifting-chord model are relatively insensitive to the resolution of the computation, and there are fundamental reasons to believe that properly converged numerical solutions may be attainable using this approach

    Quantum Communications with Compressed Decoherence Using Bright Squeezed Light

    Full text link
    We propose a scheme for long-distance distribution of quantum entanglement in which the entanglement between qubits at intermediate stations of the channel is established by using bright light pulses in squeezed states coupled to the qubits in cavities with a weak dispersive interaction. The fidelity of the entanglement between qubits at the neighbor stations (10 km apart from each other) obtained by postselection through the balanced homodyne detection of 7 dB squeezed pulses can reach F=0.99 without using entanglement purification, at same time, the probability of successful generation of entanglement is 0.34.Comment: 4 pages, 2 figure
    corecore