364 research outputs found

    Search predicts and changes patience in intertemporal choice

    Get PDF
    Intertemporal choice impacts many important outcomes, such as decisions about health, education, wealth, and the environment. However, the psychological processes underlying decisions involving outcomes at different points in time remain unclear, limiting opportunities to intervene and improve people’s patience. This research examines information-search strategies used during intertemporal choice and their impact on decisions. In experiment 1, we demonstrate that search strategies vary substantially across individuals. We subsequently identify two distinct search strategies across individuals. Comparative searchers, who compare features across options, discount future options less and are more susceptible to acceleration versus delay framing than integrative searchers, who integrate the features of an option. Experiment 2 manipulates search using an unobtrusive method to establish a causal relationship between strategy and choice, randomly assigning participants to conditions promoting either comparative or integrative search. Again, comparative search promotes greater patience than integrative search. Additionally, when participants adopt a comparative search strategy, they also exhibit greater effects of acceleration versus delay framing. Although most participants reported that the manipulation did not change their behavior, promoting comparative search decreased discounting of future rewards substantially and speeded patient choices. These findings highlight the central role that heterogeneity in psychological processes plays in shaping intertemporal choice. Importantly, these results indicate that theories that ignore variability in search strategies may be inadvertently aggregating over different subpopulations that use very different processes. The findings also inform interventions in choice architecture to increase patience and improve consumer welfare

    Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Get PDF
    The NASA Marshall Space Flight Center (MSFC) Flight Mechanics and Analysis Division developed an Adaptive Augmenting Control (AAC) algorithm for launch vehicles that improves robustness and performance by adapting an otherwise welltuned classical control algorithm to unexpected environments or variations in vehicle dynamics. This AAC algorithm is currently part of the baseline design for the SLS Flight Control System (FCS), but prior to this series of research flights it was the only component of the autopilot design that had not been flight tested. The Space Launch System (SLS) flight software prototype, including the adaptive component, was recently tested on a piloted aircraft at Dryden Flight Research Center (DFRC) which has the capability to achieve a high level of dynamic similarity to a launch vehicle. Scenarios for the flight test campaign were designed specifically to evaluate the AAC algorithm to ensure that it is able to achieve the expected performance improvements with no adverse impacts in nominal or nearnominal scenarios. Having completed the recent series of flight characterization experiments on DFRC's F/A-18, the AAC algorithm's capability, robustness, and reproducibility, have been successfully demonstrated. Thus, the entire SLS control architecture has been successfully flight tested in a relevant environment. This has increased NASA's confidence that the autopilot design is ready to fly on the SLS Block I vehicle and will exceed the performance of previous architectures

    In-Flight Suppression of an Unstable F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Get PDF
    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off-nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using post-flight frequency-domain reconstruction, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system

    In-Flight Suppression of a Destabilized F/A-18 Structural Mode Using the Space Launch System Adaptive Augmenting Control System

    Get PDF
    NASA's Space Launch System (SLS) Flight Control System (FCS) includes an Adaptive Augmenting Control (AAC) component which employs a multiplicative gain update law to enhance the performance and robustness of the baseline control system for extreme off nominal scenarios. The SLS FCS algorithm including AAC has been flight tested utilizing a specially outfitted F/A-18 fighter jet in which the pitch axis control of the aircraft was performed by a Non-linear Dynamic Inversion (NDI) controller, SLS reference models, and the SLS flight software prototype. This paper describes test cases from the research flight campaign in which the fundamental F/A-18 airframe structural mode was identified using frequency-domain reconstruction of flight data, amplified to result in closed loop instability, and suppressed in-flight by the SLS adaptive control system

    JNK1 Phosphorylates SIRT1 and Promotes Its Enzymatic Activity

    Get PDF
    SIRT1 is a NAD-dependent deacetylase that regulates a variety of pathways including the stress protection pathway. SIRT1 deacetylates a number of protein substrates, including histones, FOXOs, PGC-1α, and p53, leading to cellular protection. We identified a functional interaction between cJUN N-terminal kinase (JNK1) and SIRT1 by coimmunoprecipitation of endogenous proteins. The interaction between JNK1 and SIRT1 was identified under conditions of oxidative stress and required activation of JNK1 via phosphorylation. Modulation of SIRT1 activity or protein levels using nicotinamide or RNAi did not modify JNK1 activity as measured by its ability to phosphorylate cJUN. In contrast, human SIRT1 was phosphorylated by JNK1 on three sites: Ser27, Ser47, and Thr530 and this phosphorylation of SIRT1 increased its nuclear localization and enzymatic activity. Surprisingly, JNK1 phosphorylation of SIRT1 showed substrate specificity resulting in deacetylation of histone H3, but not p53. These findings identify a mechanism for regulation of SIRT1 enzymatic activity in response to oxidative stress and shed new light on its role in the stress protection pathway

    Errors in stimulated-Raman-induced logic gates in 133^{133}Ba+^+

    Full text link
    133Ba+{}^{133}\mathrm{Ba}^+ is illuminated by a laser that is far-detuned from optical transitions, and the resulting spontaneous Raman scattering rate is measured. The observed scattering rate is lower than previous theoretical estimates. The majority of the discrepancy is explained by a more accurate treatment of the scattered photon density of states. This work establishes that, contrary to previous models, there is no fundamental limit to laser-driven quantum gates from laser-induced spontaneous Raman scattering.Comment: 4 + 2 pages, 4 + 1 figure

    Aeolian features on Venus: Preliminary Magellan results

    Get PDF
    Magellan synthetic aperture radar data reveal numerous surface features that are attributed to aeolian, or wind processes. Wind streaks are the most common aeolian feature. They consist of radar backscatter patterns that are high, low, or mixed in relation to the surface on which they occur. A data base of more than 3400 wind streaks shows that low backscatter linear forms (long, narrow streaks) are the most common and that most streaks occur between 17°S to 30°S and 5°N to 53°N on smooth plains. Moreover, most streaks are associated with deposits from certain impact craters and some tectonically deformed terrains. We infer that both of these geological settings provide fine particulate material that can be entrained by the low-velocity winds on Venus. Turbulence and wind patterns generated by the topographic features with which many streaks are associated can account for differences in particle distributions and in the patterns of the wind streaks. Thus, some high backscatter streaks are considered to be zones that are swept free of sedimentary particles to expose rough bedrock; other high backscatter streaks may be lag deposits of dense materials from which low-density grains have been removed (dense materials such as ilmenite or pyrite have dielectric properties that would produce high backscatter patterns). Wind streaks generally occur on slopes < 2° and tend to be oriented toward the equator, consistent with the Hadley model of atmospheric circulation. In addition to wind streaks, other aeolian features on Venus include yardangs(?) and dune fields. The Aglaonice dune field, centered at 25°S, 340°E, covers ∼1290 km^2 and is located in an ejecta flow channel from the Aglaonice impact crater. The Meshkenet dune field, located at 67°N, 90°E, covers ∼17,120 km^2 in a valley between Ishtar Terra and Meshkenet Tessera. Wind streaks associated with both dune fields suggest that the dunes are of transverse forms in which the dune crests are perpendicular to the prevailing winds. Dunes on Venus signal the presence of sand-size (∼60 to 2,000 μm) grains. The possible yardangs are found at 9°N, 60.5°E, about 300 km southeast of the crater Mead. Although most aeolian features are concentrated in smooth plains near the equator, the occurrence of wind streaks is widespread, and some have been found at all latitudes and elevations. They demonstrate that aeolian processes operate widely on Venus. The intensity of wind erosion and deposits, however, varies with locality and is dependent on the wind regime and supply of particles

    Mechanism of benefit of combination thrombolytic therapy for acute myocardial infarction: A quantitative angiographic and hematologic study

    Get PDF
    AbstractObjectives. The goal of this study was to lend insight into the mechanisms responsible for the beneficial effects of combination thrombolytic therapy.Background. Combination thrombolytic therapy for acute myocardial infarction bas been associated with less reocclusion and fewer in-hospital clinical events than has monotherapy.Methods. Infarct-related quantitative coronary dimensions and hemostatic protein levels were evaluated in 287 patients with acute myocardial infarction during the early (90-min) and convalescent (7-day) phases after administration of recombinant tissue-type plasminogen activator (rt-PA), urokinase or combination rt-PA and urokinase.Results. Minimal lumen diameter was similar in the 90-min and 7-day phases after treatment with rt-PA, urokinase and combination rt-PA and urokinase (0.72 ± 0.45 mm, 0.62 ± 0.53 mm and 0.75 ± 0.58 mm, respectively, at 90 min, p = 0.16; and 1.05 ± 0.56 mm, 1.12 ± 0.72 mm and 0.94 ± 0.54 mm, respectively, at 7 days, p = 0.22). In-hospital clinical event and reocclusion rates were less frequent in patients receiving combination therapy than in those receiving monotherapy (25% vs. 38% and 32% for rt-PA and urokinase, respectively, p = 0.084; and 3% vs. 13% and 9% for rt-PA and urokinase, respectively, p = 0.03), but these events were unrelated to early or late coronary dimensions. Patients receiving combination therapy or urokinase monotherapy had significantly higher peak fibrin degradation products (1,307 ± 860 and 1,285 ± 898 μg/ml vs. 435 ± 717 μg/ml, respectively, p < 0.0001) and lower nadir fibrinogen levels (0.85 ± 1.00 and 0.75 ± 0.53 g/liter vs. 1.90 ± 0.86 g/liter, respectively, p < 0.0001) than did those receiving rt-PA monotherapy. Peak fibrinogen degradation products indirectly correlated (p = 0.004) and baseline (p = 0.026) and nadir (p = 0.089) fibrinogen levels directly correlated with reocclusion.Conclusions. Lower in-hospital clinical event and reocclusion rates observed with combination thrombolytic therapy may relate to systemic hematologic factors rather than to the residual lumen obstruction after thrombolysis
    • …
    corecore