5 research outputs found

    Comprehensive assessment of cytochromes P450 and transporter genetics with endoxifen concentration during tamoxifen treatment

    Get PDF
    Objectives Tamoxifen bioactivation to endoxifen is mediated primarily by CYP2D6; however, considerable variability remains unexplained. Our aim was to perform a comprehensive assessment of the effect of genetic variation in tamoxifen-relevant enzymes and transporters on steady-state endoxifen concentrations. Patients and methods Comprehensive genotyping of CYP enzymes and transporters was performed using the iPLEX ADME PGx Pro Panel in 302 tamoxifen-treated breast cancer patients. Predicted activity phenotype for 19 enzymes and transporters were analyzed for univariate association with endoxifen concentration, and then adjusted for CYP2D6 and clinical covariates. Results In univariate analysis, higher activity of CYP2C8 (regression β=0.22, P=0.020) and CYP2C9 (β=0.20, P=0.04), lower body weight (β=-0.014, P<0.0001), and endoxifen measurement during winter (each β< -0.39, P=0.002) were associated with higher endoxifen concentrations. After adjustment for the CYP2D6 diplotype, weight, and season, CYP2C9 remained significantly associated with higher concentrations (P=0.02), but only increased the overall model R2 by 1.3%. Conclusion Our results further support a minor contribution of CYP2C9 genetic variability toward steadystate endoxifen concentrations. Integration of clinician and genetic variables into individualized tamoxifen dosing algorithms would marginally improve their accuracy and potentially enhance tamoxifen treatment outcomes

    Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays

    Get PDF
    Purpose: In this era of precision-based medicine, for optimal patient care, results reported from commercial next-generation sequencing (NGS) assays should adequately reflect the burden of somatic mutations in the tumor being sequenced. Here, we sought to determine the prevalence of clonal hematopoiesis leading to possible misattribution of tumor mutation calls on unpaired Foundation Medicine NGS assays. Experimental Design: This was a retrospective cohort study of individuals undergoing NGS of solid tumors from two large cancer centers. We identified and quantified mutations in genes known to be frequently altered in clonal hematopoiesis (DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2, SF3B1, CBL, JAK2) that were returned to physicians on clinical Foundation Medicine reports. For a subset of patients, we explored the frequency of true clonal hematopoiesis by comparing mutations on Foundation Medicine reports with matched blood sequencing. Results: Mutations in genes that are frequently altered in clonal hematopoiesis were identified in 65% (1,139/1,757) of patients undergoing NGS. When excluding TP53, which is often mutated in solid tumors, these events were still seen in 35% (619/1,757) of patients. Utilizing paired blood specimens, we were able to confirm that 8% (18/226) of mutations reported in these genes were true clonal hematopoiesis events. The majority of DNMT3A mutations (64%, 7/11) and minority of TP53 mutations (4%, 2/50) were clonal hematopoiesis. Conclusions: Clonal hematopoiesis mutations are commonly reported on unpaired NGS testing. It is important to recognize clonal hematopoiesis as a possible cause of misattribution of mutation origin when applying NGS findings to a patient's care

    Patients' Understanding of How Genotype Variation Affects Benefits of Tamoxifen Therapy for Breast Cancer

    Get PDF
    CYP2D6 is a critical enzyme in the metabolism of tamoxifen and potentially a key determinant in breast cancer outcomes. Our study examined patients' beliefs about how CYP2D6 genotype would affect their prognoses
    corecore