53,729 research outputs found
An interim report on the NTS-2 solar cell experiment
Data obtained from the fourteen solar cell modules on the NTS-2 satellite are presented together with a record of panel temperature and sun inclination. The following flight data are discussed: (1) state of the art solar cell configurations which embody improvements in solar cell efficiency through new silicon surface and bulk technology, (2) improved coverslip materials and coverslip bonding techniques, (3) short and long term effects of ultraviolet rejection filters vs. no filters on the cells, (4) degradation on a developmental type of liquid epitaxy gallium-aluminum-arsenide solar cell, and (5) space radiation effects
Method of reducing temperature in high-speed photography
A continuing problem in high-speed motion picture photography is adequate lighting and the associated temperature rise. Large temperature rises can damage subject matter and make recording of the desired images impossible. The problem is more severe in macrophotography because of bellows extension and the necessary increase in light. This report covers one approach to reducing the initial temperature rise: the use of filters and heat-absorbing materials. The accompanying figures provide the starting point for selecting distance as a function of light intensity and determining the associated temperature rise. Using these figures will allow the photographer greater freedom in meeting different photographic situations
Applicability of the control configured design approach to advanced earth orbital transportation systems
The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles
Thermoviscoplastic analysis of fibrous periodic composites using triangular subvolumes
The nonlinear viscoplastic behavior of fibrous periodic composites is analyzed by discretizing the unit cell into triangular subvolumes. A set of these subvolumes can be configured by the analyst to construct a representation for the unit cell of a periodic composite. In each step of the loading history, the total strain increment at any point is governed by an integral equation which applies to the entire composite. A Fourier series approximation allows the incremental stresses and strains to be determined within a unit cell of the periodic lattice. The nonlinearity arising from the viscoplastic behavior of the constituent materials comprising the composite is treated as fictitious body force in the governing integral equation. Specific numerical examples showing the stress distributions in the unit cell of a fibrous tungsten/copper metal matrix composite under viscoplastic loading conditions are given. The stress distribution resulting in the unit cell when the composite material is subjected to an overall transverse stress loading history perpendicular to the fibers is found to be highly heterogeneous, and typical homogenization techniques based on treating the stress and strain distributions within the constituent phases as homogeneous result in large errors under inelastic loading conditions
Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons
A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth
Effects of Quasi-Static Aberrations in Faint Companion Searches
We present the first results obtained at CFHT with the TRIDENT infrared
camera, dedicated to the detection of faint companions close to bright nearby
stars. The camera's main feature is the acquisition of three simultaneous
images in three wavelengths (simultaneous differential imaging) across the
methane absorption bandhead at 1.6 micron, that enables a precise subtraction
of the primary star PSF while keeping the companion signal. The main limitation
is non-common path aberrations between the three optical paths that slightly
decorrelate the PSFs. Two types of PSF calibrations are combined with the
differential simultaneous imaging technique to further attenuate the PSF:
reference star subtraction and instrument rotation to smooth aberrations. It is
shown that a faint companion with a DeltaH of 10 magnitudes would be detected
at 0.5 arcsec from the primary.Comment: 12 pages, 10 figures, to appear in Astronomy with High Contrast
Imaging, EAS Publications Serie
Noncanonical spike-related BOLD responses in focal epilepsy
Till now, most studies of the Blood Oxygen Level-Dependent (BOLD) response to interictal epileptic discharges (IED) have assumed that its time course matches closely to that of brief physiological stimuli, commonly called the canonical event-related haemodynamic response function (canonical HRF). Analyses based on that assumption have produced significant response patterns that are generally concordant with prior electroclinical data. In this work, we used a more flexible model of the event-related response, a Fourier basis set, to investigate the presence of other responses in relation to individual IED in 30 experiments in patients with focal epilepsy. We found significant responses that had a noncanonical time course in 37% of cases, compared with 40% for the conventional, canonical HRF-based approach. In two cases, the Fourier analysis suggested activations where the conventional model did not. The noncanonical activations were almost always remote from the presumed generator of epileptiform activity. In the majority of cases with noncanonical responses, the noncanonical responses in single-voxel clusters were suggestive of artifacts. We did not find evidence for IED-related noncanonical HRFs arising from areas of pathology, suggesting that the BOLD response to IED is primarily canonical. Noncanonical responses may represent a number of phenomena, including artefacts and propagated epileptiform activity
Quantum corrections to the Larmor radiation formula in scalar electrodynamics
We use the semi-classical approximation in perturbative scalar quantum
electrodynamics to calculate the quantum correction to the Larmor radiation
formula to first order in Planck's constant in the non-relativistic
approximation, choosing the initial state of the charged particle to be a
momentum eigenstate. We calculate this correction in two cases: in the first
case the charged particle is accelerated by a time-dependent but
space-independent vector potential whereas in the second case it is accelerated
by a time-independent vector potential which is a function of one spatial
coordinate. We find that the corrections in these two cases are different even
for a charged particle with the same classical motion. The correction in each
case turns out to be non-local in time in contrast to the classical
approximation.Comment: 19 page
- …