1,383 research outputs found

    Reggae to Rachmaninoff: How and Why People Participate in Arts and Culture

    Get PDF
    Provides the results of a telephone survey conducted to help inform those whose aim is to broaden and diversify cultural participation, and promote the role of arts and culture in strengthening American communities

    Community Partnerships for Cultural Participation: Concepts, Prospects, and Challenges

    Get PDF
    Evaluates the first year of the Wallace Foundation's Community Partnerships for Cultural Participation Initiative, which funded nine community foundations working to increase participation in the arts and culture in their communities

    Eighteen Rootstock and Five Scion Tomato Varieties: Seedling Growth Rates Before Grafting and Success in Grafting the Ninety Variety Combinations

    Get PDF
    This is a compilation of 30 research trial reports from four land-grant universities in the Midwestern United States. Crops include cantaloupe, pickling cucumber, pepper, potato, pumpkin, summer squash and zucchini, sweet corn, tomato, and watermelon. Somecrops were evaluated in high tunnels or hoophouses. Most trials evaluated different cultivars or varieties. One report addressed plant spacing for sweet corn and one addressed soil block for production of tomato seedlings. A list of vegetable seed sources and a list of other online sources of vegetable trial reports are also included

    Cyclic nucleotide signalling in malaria parasites.

    Get PDF
    The cyclic nucleotides 3', 5'-cyclic adenosine monophosphate (cAMP) and 3', 5'-cyclic guanosine monophosphate (cGMP) are intracellular messengers found in most animal cell types. They usually mediate an extracellular stimulus to drive a change in cell function through activation of their respective cyclic nucleotide-dependent protein kinases, PKA and PKG. The enzymatic components of the malaria parasite cyclic nucleotide signalling pathways have been identified, and the genetic and biochemical studies of these enzymes carried out to date are reviewed herein. What has become very clear is that cyclic nucleotides play vital roles in controlling every stage of the complex malaria parasite life cycle. Our understanding of the involvement of cyclic nucleotide signalling in orchestrating the complex biology of malaria parasites is still in its infancy, but the recent advances in our genetic tools and the increasing interest in signalling will deliver more rapid progress in the coming years

    Abnormal structural and functional brain connectivity in gray matter heterotopia

    Get PDF
    available in PMC 2013 June 01Purpose:  Periventricular nodular heterotopia (PNH) is a malformation of cortical development associated with epilepsy and dyslexia. Evidence suggests that heterotopic gray matter can be functional in brain malformations and that connectivity abnormalities may be important in these disorders. We hypothesized that nodular heterotopia develop abnormal connections and systematically investigated the structural and functional connectivity of heterotopia in patients with PNH. Methods:  Eleven patients were studied using diffusion tensor tractography and resting-state functional connectivity MRI with bold oxygenation level–dependent (BOLD) imaging. Fiber tracks with a terminus within heterotopic nodules were visualized to determine structural connectivity, and brain regions demonstrating resting-state functional correlations to heterotopic nodules were analyzed. Relationships between these connectivity results and measures of clinical epilepsy and cognitive disability were examined. Key Findings:  A majority of heterotopia (69%) showed structural connectivity to discrete regions of overlying cortex, and almost all (96%) showed functional connectivity to these regions (mean peak correlation coefficient 0.61). Heterotopia also demonstrated connectivity to regions of contralateral cortex, other heterotopic nodules, ipsilateral but nonoverlying cortex, and deep gray matter structures or the cerebellum. Patients with the longest durations of epilepsy had a higher degree of abnormal functional connectivity (p = 0.036). Significance:  Most heterotopic nodules in PNH are structurally and functionally connected to overlying cortex, and the strength of abnormal connectivity is higher among patients with the longest duration of epilepsy. Along with prior evidence that cortico-cortical tract defects underlie dyslexia in this disorder, the current findings suggest that altered connectivity is likely a critical substrate for neurologic dysfunction in brain malformations.National Institutes of Health (U.S.) (NIH/NINDS R01 NS073601)National Institutes of Health (U.S.) (NIH/NINDS K23 NS049159)Epilepsy Foundation of AmericaHarvard University (William F. Milton Fund

    Transition Metal Complexes of Dibenzyl Tetraazamacrocycles

    Get PDF
    Tetraazamacrocycles, cyclic molecules with four nitrogen atoms, have long been known to produce highly stable transition metal complexes. Cross-bridging such molecules with 2-carbon chains has been shown to enhance the stability of these complexes even further, providing enough stability to use the resulting compounds in applications as diverse and demanding as aqueous, green oxidation catalysis all the way to drug molecules injected into humans. Although the stability of these compounds is believed to result from the increased rigidity and topological complexity imparted by the cross-bridge, there is insufficient experimental data to exclude other causes. In this study, standard organic and inorganic synthetic methods were used to produce unbridged dibenzyl tetraazamacrocycle analogues of known cross-bridged tetraazamacrocycles and their transition metal complexes to allow direct comparison of molecules identical except for the cross-bridge. The syntheses of the known tetraazamacrocycles and the novel transition metal complexes were successful with high yields and purity. Initial chemical characterization of the complexes by UV-Visible spectroscopy and cyclic voltammetry shows little difference in electronic properties from bridged versions. Direct comparison studies of the unbridged and bridged compounds’ stabilities remain to be carried out and will shed light on the importance of the cross-bridge to complex robustness

    Influence of Bovine Viral Diarrhea Virus Infection on Artificial Insemination Conception and Breeding Season Pregnancy Success in Vaccinated Beef Herds

    Get PDF
    Bovine Viral Diarrhea Virus (BVDV) causes reproductive economic losses in cattle. The objective of this study was to evaluate the influence of BVDV infection on reproductive success. Vaccinated cows (n = 370) and heifers (n = 528) from nine different herds were synchronized using the 7-day CO-Synch + CIDR protocol and were bred using fixed-time artificial insemination (FTAI). On d 28 following insemination, blood samples were collected and pregnancy status was determined. Non-pregnant animals were resynchronized and FTAI occurred a second time. In six herds, bulls were comingled with females beginning 10-15 d after the second AI. Final pregnancy status was determined 33-80 d following the first pregnancy diagnosis. Blood samples were tested for the presence of BVDV antigen using the IDEXX BVDV PI X2 Kit. Animals that tested positive were considered infected with BVDV at the time of blood collection. Herds were determined to be BVDV infected by the presence of at least one animal having a positive test for antigen (n = 4 infected herds, n = 5 non-infected herds). Statistical analyses were performed using the GLIMMIX procedure of SAS with herd as a random variable. Herds that had evidence of BVDV infection at d 28 following insemination had significantly decreased (P \u3c 0.01) first service AI conception rates compared to herds that had no evidence of infection (34 ± 2.3% vs. 54 ± 2.3%, respectively). Additionally, breeding season pregnancy rates were decreased (P \u3c 0.01) in BVDV infected herds compared to non-infected herds (69 ± 3.4% vs. 80 ± 3.6%, respectively). There was no significant effect of BVDV infection status on embryonic loss (P = 0.42) or percentage of animals which lost a pregnancy and rebred by the end of the breeding season (P = 0.63). In conclusion, BVDV infection in well vaccinated herds had a significant negative impact on both first service AI conception rate and overall breeding season pregnancy success

    Rapid Quantification of Dynamic and Spall Strength of Metals Across Strain Rates

    Full text link
    The response of metals and their microstructures under extreme dynamic conditions can be markedly different from that under quasistatic conditions. Traditionally, high strain rates and shock stresses are measured using cumbersome and expensive methods such as the Kolsky bar or large spall experiments. These methods are low throughput and do not facilitate high-fidelity microstructure-property linkages. In this work, we combine two powerful small-scale testing methods, custom nanoindentation, and laser-driven micro-flyer shock, to measure the dynamic and spall strength of metals. The nanoindentation system is configured to test samples from quasistatic to dynamic strain rate regimes (103^{-3} s1^{-1} to 10+4^{+4} s1^{-1}). The laser-driven micro-flyer shock system can test samples through impact loading between 10+5^{+5} s1^{-1} to 10+7^{+7} s1^{-1} strain rates, triggering spall failure. The model material used for testing is Magnesium alloys, which are lightweight, possess high-specific strengths and have historically been challenging to design and strengthen due to their mechanical anisotropy. Here, we modulate their microstructure by adding or removing precipitates to demonstrate interesting upticks in strain rate sensitivity and evolution of dynamic strength. At high shock loading rates, we unravel an interesting paradigm where the spall strength of these materials converges, but the failure mechanisms are markedly different. Peak aging, considered to be a standard method to strengthen metallic alloys, causes catastrophic failure, faring much worse than solutionized alloys. Our high throughput testing framework not only quantifies strength but also teases out unexplored failure mechanisms at extreme strain rates, providing valuable insights for the rapid design and improvement of metals for extreme environments

    Reducing bias in auditory duration reproduction by integrating the reproduced signal

    Get PDF
    Duration estimation is known to be far from veridical and to differ for sensory estimates and motor reproduction. To investigate how these differential estimates are integrated for estimating or reproducing a duration and to examine sensorimotor biases in duration comparison and reproduction tasks, we compared estimation biases and variances among three different duration estimation tasks: perceptual comparison, motor reproduction, and auditory reproduction (i.e. a combined perceptual-motor task). We found consistent overestimation in both motor and perceptual-motor auditory reproduction tasks, and the least overestimation in the comparison task. More interestingly, compared to pure motor reproduction, the overestimation bias was reduced in the auditory reproduction task, due to the additional reproduced auditory signal. We further manipulated the signal-to-noise ratio (SNR) in the feedback/comparison tones to examine the changes in estimation biases and variances. Considering perceptual and motor biases as two independent components, we applied the reliability-based model, which successfully predicted the biases in auditory reproduction. Our findings thus provide behavioral evidence of how the brain combines motor and perceptual information together to reduce duration estimation biases and improve estimation reliability
    corecore