9 research outputs found

    AXR1-ECR1–Dependent Conjugation of RUB1 to the Arabidopsis Cullin AtCUL1 Is Required for Auxin Response

    No full text
    Mutations in the AXR1 gene result in a reduction in auxin response and diverse defects in auxin-regulated growth and development. In a previous study, we showed that AXR1 forms a heterodimer with the ECR1 protein. This enzyme activates the ubiquitin-related protein RUB1 in vitro. Furthermore, we showed that the Skp1-Cul1/Cdc53-F-box (SCF) subunit AtCUL1 is modified by RUB1 in vivo. In this report, we demonstrate that the formation of RUB-AtCUL1 is dependent on AXR1 and ECR1 in vivo. The expression of AXR1 and ECR1 is restricted to zones of active cell division and cell elongation, consistent with their role in growth regulation. These results provide strong support for a model in which RUB conjugation of AtCUL1 affects the function of SCF E3s that are required for auxin response

    AXR2 Encodes a Member of the Aux/IAA Protein Family

    Get PDF
    The dominant gain-of-function axr2-1 mutation of Arabidopsis causes agravitropic root and shoot growth, a short hypocotyl and stem, and auxin-resistant root growth. We have cloned the AXR2 gene using a map-based approach, and find that it is the same as IAA7, a member of the IAA (indole-3-acetic acid) family of auxin-inducible genes. The axr2-1 mutation changes a single amino acid in conserved domain II of AXR2/IAA7. We isolated loss-of-function mutations in AXR2/IAA7 as intragenic suppressors of axr2-1 or in a screen for insertion mutations in IAA genes. A null mutant has a slightly longer hypocotyl than wild-type plants, indicating that AXR2/IAA7 controls development in light-grown seedlings, perhaps in concert with other gene products. Dark-grown axr2-1 mutant plants have short hypocotyls and make leaves, suggesting that activation of AXR2/IAA7 is sufficient to induce morphological responses normally elicited by light. Previously described semidominant mutations in two other Arabidopsis IAA genes cause some of the same phenotypes as axr2-1, but also cause distinct phenotypes. These results illustrate functional differences among members of the Arabidopsis IAA gene family

    Identification of an SCF ubiquitin–ligase complex required for auxin response in Arabidopsis thaliana

    Get PDF
    The plant hormone auxin regulates diverse aspects of plant growth and development. We report that in Arabidopsis, auxin response is dependent on a ubiquitin-ligase (E3) complex called SCF(TIR1). The complex consists of proteins related to yeast Skp1p and Cdc53p called ASK and AtCUL1, respectively, as well as the F-box protein TIR1. Mutations in either ASK1 or TIR1 result in decreased auxin response. Further, overexpression of TIR1 promotes auxin response suggesting that SCF(TIR1) is limiting for the response. These results provide new support for a model in which auxin action depends on the regulated proteolysis of repressor proteins

    In Vitro and In Vivo Characterization of Plant Growth Promoting Bacillus Strains Isolated from Extreme Environments of Eastern Algeria.

    Full text link
    This report is to our knowledge the first to study plant growth promotion and biocontrol characteristics of Bacillus isolates from extreme environments of Eastern Algeria. Seven isolates of 14 (50 %) were screened for their ability to inhibit growth of some phytopathogenic fungi on PDA and some roots exudates. The bacteria identification based on 16S r-RNA and gyrase-A gene sequence analysis showed that 71 % of the screened isolates belonged to Bacillus amyloliquefaciens and the rest were closely related to B. atrophaeus and B. mojavensis. Most of them had high spore yields (22 x 108-27 x 108 spores/ml). They produced protease and cellulase cell wall-degrading enzymes while the chitinase activity was only observed in the B. atrophaeus (6SEL). A wide variety of lipopeptides homologous was detected by liquid chromatography-electrospray ionization-mass spectrometry analysis. Interestingly, some additional peaks with new masses were characterized, which may correspond to new fengycin classes. The isolates produced siderophores and indole-3- acetic acid phytohormone. The greenhouse experiment using a naturally infested soil with Sclerotonia sclerotiorum showed that the B. atrophaeus (6SEL) significantly increased the size of the chickpea plants and reduced the stem rot disease (P < 0.05). These results suggest that these isolates may be used further as bio-inoculants to improve crop systems
    corecore