4,447 research outputs found

    An Acoustic Emission and Acousto-Ultrasonic Analysis of Impact Damaged Composite Pressure Vessels

    Get PDF
    The research presented herein summarizes the development of acoustic emission (AE) and acousto-ultrasonic (AU) techniques for the nondestructive evaluation of filament wound composite pressure vessels. Vessels fabricated from both graphite and kevlar fibers with an epoxy matrix were examined prior to hydroburst using AU and during hydroburst using AE. A dead weight drop apparatus featuring both blunt and sharp impactor tips was utilized to produce a single known energy 'damage' level in each of the vessels so that the degree to which the effects of impact damage could be measured. The damage levels ranged from barely visible to obvious fiber breakage and delamination. Independent neural network burst pressure prediction models were developed from a sample of each fiber/resin material system. Here, the cumulative AE amplitude distribution data collected from low level proof test (25% of the expected burst for undamaged vessels) were used to measure the effects of the impact on the residual burst pressure of the vessels. The results of the AE/neural network model for the inert propellant filled graphite/epoxy vessels 'IM7/3501-6, IM7/977-2 and IM7/8553-45' demonstrated that burst pressures can be predicted from low level AE proof test data, yielding an average error of 5.0%. The trained network for the IM7/977-2 class vessels was also able to predict the expected burst pressure of taller vessels (three times longer hoop region length) constructed of the same material and using the same manufacturing technique, with an average error of 4.9%. To a lesser extent, the burst pressure prediction models could also measure the effects of impact damage to the kevlar/epoxy 'Kevlar 49/ DPL862' vessels. Here though, due to the higher attenuation of the material, an insufficient amount of AE amplitude information was collected to generate robust network models. Although, the worst case trial errors were less than 6%, when additional blind predictions were attempted, errors as high as 50% were produced. An acousto-ultrasonic robotic evaluation system (AURES) was developed for mapping the effects of damage on filament wound pressure vessels prior to hydroproof testing. The AURES injects a single broadband ultrasonic pulse into each vessel at preprogrammed positions and records the effects of the interaction of that pulse on the material volume with a broadband receiver. A stress wave factor in the form of the energy associated with the 750 to 1000 kHz and 1000 to 1250 kHz frequency bands were used to map the potential failure sites for each vessel. The energy map associated with the graphite/epoxy vessels was found to decrease in the region of the impact damage. The kevlar vessels showed the opposite trend, with the energy values increasing around the damage/failure sites

    Study of Acoustic Emissions from Composites

    Get PDF
    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures

    Study Thermographic Flaw Detection

    Get PDF
    The development of thermographic inspection methods for use on aerospace structures is under investigation. Several different material systems, structural geometries and defect types have been included in this study so as to establish a baseline from which future IRT testing can be made. This study examines various thermal loading techniques in an attempt to enhance the likelihood of capturing and identifying critically sized flaws under 'non-laboratory' actual working conditions. Qualification techniques and calibration standards are also being investigated to standardize the thermographic method. In conjunction with the thermographic inspections, advanced image processing techniques including digital filtering and neural networks have been investigated to increase the ability of 91 detecting and sizing flaws. Here, the digitized thermographic images are mathematically manipulated through various filtering techniques and/or artificial neural mapping schemes to enhance its overall quality, permitting accurate flaw identification even when the signal-to-noise ratio is low

    Study Methods to Standardize Thermography NDE

    Get PDF
    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Kevlar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary

    Study Acoustic Emissions from Composites

    Get PDF
    The nondestructive evaluation (NDE) of future propulsion systems utilizing advanced composite structures for the storage of cryogenic fuels, such as liquid hydrogen or oxygen, presents many challenges. Economic justification for these structures requires, light weight, reusable components with an infrastructure allowing periodic evaluation of structural integrity after enduring demanding stresses during operation. A major focus has been placed on the use of acoustic emission NDE to detect propagating defects, in service, necessitating an extensive study into characterizing the nature of acoustic signal propagation at very low temperatures and developing the methodology of applying AE sensors to monitor cryogenic components. This work addresses the question of sensor performance in the cryogenic environment. Problems involving sensor mounting, spectral response and durability are addressed. The results of this work provides a common point of measure from which sensor selection can be made when testing composite components at cryogenic temperatures

    Thermographic Qualification of Graphite/Epoxy Instrumentation Racks

    Get PDF
    A nondestructive evaluation method is desired for ensuring the 'as manufactured' and 'post service' quality of graphite/epoxy instrumentation rack shells. The damage tolerance and geometry of the racks dictate that the evaluation method be capable of identifying defects, as small as 0.25 inch 2 in area, over large acreage regions, tight compound radii and thickness transition zones. The primary defects of interest include voids, inclusions, delaminations and porosity. The potential for an infrared thermographic inspection to replace ultrasonic testing, for qualifying the racks as 'defect free' is under investigation. The inspection process is validated by evaluating defect standard panels built to the same specifications as the racks, except for the insertion of artificial fabricated defects. The artificial defects are designed to match those which are most prevalent in the actual instrumentation racks. A target defect area of 0.0625 inch 2 (a square with 0.25 inch on a side) was chosen for the defect standard panels to ensure the ability to find all defects of the critical (0.25 inch squared) size

    Acoustic method of damage sensing in composite materials

    Get PDF
    The use of acoustic emission and acousto-ultrasonics to characterize impact damage in composite structures is being performed on both graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology to include neural net analysis and/or other multivariate techniques will enhance the capability of the technique to identify failure mechanisms during fracture. The acousto-ultrasonics technique will be investigated to determine its ability to predict regions prone to failure prior to the burst tests. The combination of the two methods will allow for simple nondestructive tests to be capable of predicting the performance of a composite structure prior to being placed in service and during service

    An Initial Look at America's Promise: Successes, Challenges and Opportunities

    Get PDF
    America's Promise is a pioneering initiative that seeks to address overall youth development by creating community-wide programming based on proven practices necessary for a successful childhood and adolescence. A few examples of these evidence-based program components include community service, mentoring and developing marketable skills. This brief report presents P/PV's preliminary analysis of how the effort took root in three Communities of Promise: Charlotte, North Carolina; Minneapolis, Minnesota; and San Francisco, California. It explores the successes, challenges and opportunities that have resulted from America's Promise

    A Neural Network/Acoustic Emission Analysis of Impact Damaged Graphite/Epoxy Pressure Vessels

    Get PDF
    Acoustic emission (AE) signal analysis has been used to measure the effects of impact damage on burst pressure in 5.75 inch diameter, inert propellant filled, filament wound pressure vessels. The AE data were collected from fifteen graphite/epoxy pressure vessels featuring five damage states and three resin systems. A burst pressure prediction model was developed by correlating the AE amplitude (frequency) distribution, generated during the first pressure ramp to 800 psig (approximately 25% of the average expected burst pressure for an undamaged vessel) to known burst pressures using a four layered back propagation neural network. The neural network, trained on three vessels from each resin system, was able to predict burst pressures with a worst case error of 5.7% for the entire fifteen bottle set
    corecore