665 research outputs found

    Scanning SQUID Susceptometry of a paramagnetic superconductor

    Full text link
    Scanning SQUID susceptometry images the local magnetization and susceptibility of a sample. By accurately modeling the SQUID signal we can determine the physical properties such as the penetration depth and permeability of superconducting samples. We calculate the scanning SQUID susceptometry signal for a superconducting slab of arbitrary thickness with isotropic London penetration depth, on a non-superconducting substrate, where both slab and substrate can have a paramagnetic response that is linear in the applied field. We derive analytical approximations to our general expression in a number of limits. Using our results, we fit experimental susceptibility data as a function of the sample-sensor spacing for three samples: 1) delta-doped SrTiO3, which has a predominantly diamagnetic response, 2) a thin film of LaNiO3, which has a predominantly paramagnetic response, and 3) a two-dimensional electron layer (2-DEL) at a SrTiO3/AlAlO3 interface, which exhibits both types of response. These formulas will allow the determination of the concentrations of paramagnetic spins and superconducting carriers from fits to scanning SQUID susceptibility measurements.Comment: 11 pages, 13 figure

    Extrasolar planet science with the Antarctic planet interferometer

    Get PDF
    The primary limitation to ground based astronomy is the Earth's atmosphere. The atmosphere above the Antarctic plateau is different in many regards compared to the atmosphere at temperate sites. The extreme altitude, cold and low humidity offer a uniquely transparent atmosphere at many wavelengths. Studies at the South Pole have shown additionally that the turbulence properties of the night time polar atmosphere are fundamentally different to mid latitudes. Despite relatively strong ground layer turbulence, the lack of high altitude turbulence combined with low wind speeds presents favorable conditions for interferometry. The unique properties of the polar atmosphere can be exploited for Extrasolar Planet studies with differential astrometry, differential phase and nulling intereferometers. This paper combines the available data on the properties of the atmosphere at the South Pole and other Antarctic plateau sites for Extrasolar Planet science with interferometry

    Complete Genome Sequences of Paenibacillus Larvae Phages BN12, Dragolir, Kiel007, Leyra, Likha, Pagassa, PBL1c, and Tadhana

    Get PDF
    We present here the complete genomes of eight phages that infect Paenibacillus larvae, the causative agent of American foulbrood in honeybees. Phage PBL1c was originally isolated in 1984 from a P. larvae lysogen, while the remaining phages were isolated in 2014 from bee debris, honeycomb, and lysogens from three states in the USA

    Amygdalar Functional Connectivity Differences Associated With Reduced Pain Intensity in Pediatric Peripheral Neuropathic Pain

    Get PDF
    Background: There is evidence of altered corticolimbic circuitry in adults with chronic pain, but relatively little is known of functional brain mechanisms in adolescents with neuropathic pain (NeuP). Pediatric NeuP is etiologically and phenotypically different from NeuP in adults, highlighting the need for pediatric-focused research. The amygdala is a key limbic region with important roles in the emotional-affective dimension of pain and in pain modulation. Objective: To investigate amygdalar resting state functional connectivity (rsFC) in adolescents with NeuP. Methods This cross-sectional observational cohort study compared resting state functional MRI scans in adolescents aged 11–18 years with clinical features of chronic peripheral NeuP (n = 17), recruited from a tertiary clinic, relative to healthy adolescents (n = 17). We performed seed-to-voxel whole-brain rsFC analysis of the bilateral amygdalae. Next, we performed post hoc exploratory correlations with clinical variables to further explain rsFC differences. Results: Adolescents with NeuP had stronger negative rsFC between right amygdala and right dorsolateral prefrontal cortex (dlPFC) and stronger positive rsFC between right amygdala and left angular gyrus (AG), compared to controls (PFDR<0.025). Furthermore, lower pain intensity correlated with stronger negative amygdala-dlPFC rsFC in males (r = 0.67, P = 0.034, n = 10), and with stronger positive amygdala-AG rsFC in females (r = −0.90, P = 0.006, n = 7). These amygdalar rsFC differences may thus be pain inhibitory. Conclusions: Consistent with the considerable affective and cognitive factors reported in a larger cohort, there are rsFC differences in limbic pain modulatory circuits in adolescents with NeuP. Findings also highlight the need for assessing sex-dependent brain mechanisms in future studies, where possible

    How Bugs Kill Bugs: Progress and Challenges in Bacteriocin Research

    Get PDF
    Abstract A Biochemical Society Focused Meeting on bacteriocins was held at the University of Nottingham on 16-18 July 2012 to mark the retirement of Professor Richard James and honour a scientific career of more than 30 years devoted to an understanding of the biology of colicins, bacteriocins produced by Escherichia coli. This meeting was the third leg of a triumvirate of symposia that included meetings at theÎle de Bendor, France, in 1991 and the University of East Anglia, Norwich, U.K., in 1998, focused on bringing together leading experts in basic and applied bacteriocin research. The symposium which attracted 70 attendees consisted of 18 invited speakers and 22 selected oral communications spread over four themes: (i) Role of bacteriocins in bacterial ecology, (ii) Mode of action of bacteriocins, (ii) Mechanisms of bacteriocin import across the cell envelope, and (iv) Biotechnological and biomedical applications of bacteriocins. Speakers and poster presenters travelled from around the world, including the U.S.A., Japan, Asia and Europe, to showcase the latest developments in their scientific research

    Hydrocarbons in the Upper Troposphere and Lower Stratosphere Observed from ACE-FTS and Comparisons with WACCM

    Get PDF
    Satellite measurements from the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) are used to examine the global, seasonal variations of several hydrocarbons, including carbon monoxide (CO), ethane (C2H6), acetylene (C2H2), and hydrogen cyanide (HCN). We focus on quantifying large-scale seasonal behavior from the middle troposphere to the stratosphere, particularly in the tropics, and furthermore make detailed comparisons with the Whole Atmosphere Community Climate Model (WACCM) chemistry climate model (incorporating tropospheric photochemistry, time-varying hydrocarbon emissions, and meteorological fields nudged from reanalysis). Comparisons with Microwave Limb Sounder (MLS) measurements of CO are also included to understand sampling limitations of the ACE-FTS data and biases among observational data sets. Results show similar overall variability for CO, C2H6, and C2H2, with a semiannual cycle in the tropical upper troposphere related to seasonally varying sources and deep tropical convection, plus a maximum during Northern Hemisphere summer tied to the Asian monsoon anticyclone. These species also reveal a strong annual cycle above the tropical tropopause, tied to annual variations in the upward branch of Brewer-Dobson circulation. HCN reveals substantial differences from the other species, due to a longer photochemical lifetime and a chemical sink associated with ocean surface contact, which produces a minimum in the tropical upper troposphere not observed in the other species. For HCN, transport to the stratosphere occurs primarily through the Asian summer monsoon anticyclone. Overall, the WACCM simulation is able to reproduce most of the large-scale features observed in the ACE-FTS data, suggesting a reasonable simulation of sources and large-scale transport. The model is too low in the Southern Hemisphere subtropics during Austral spring, which indicates underestimate of biomass burning emissions and/or insufficient vertical transport in the model. © 2012. American Geophysical Union

    Daytime Naps, Motor Memory Consolidation and Regionally Specific Sleep Spindles

    Get PDF
    BACKGROUND: Increasing evidence demonstrates that motor-skill memories improve across a night of sleep, and that non-rapid eye movement (NREM) sleep commonly plays a role in orchestrating these consolidation enhancements. Here we show the benefit of a daytime nap on motor memory consolidation and its relationship not simply with global sleep-stage measures, but unique characteristics of sleep spindles at regionally specific locations; mapping to the corresponding memory representation. METHODOLOGY/PRINCIPAL FINDINGS: Two groups of subjects trained on a motor-skill task using their left hand – a paradigm known to result in overnight plastic changes in the contralateral, right motor cortex. Both groups trained in the morning and were tested 8 hr later, with one group obtaining a 60–90 minute intervening midday nap, while the other group remained awake. At testing, subjects that did not nap showed no significant performance improvement, yet those that did nap expressed a highly significant consolidation enhancement. Within the nap group, the amount of offline improvement showed a significant correlation with the global measure of stage-2 NREM sleep. However, topographical sleep spindle analysis revealed more precise correlations. Specifically, when spindle activity at the central electrode of the non-learning hemisphere (left) was subtracted from that in the learning hemisphere (right), representing the homeostatic difference following learning, strong positive relationships with offline memory improvement emerged–correlations that were not evident for either hemisphere alone. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that motor memories are dynamically facilitated across daytime naps, enhancements that are uniquely associated with electrophysiological events expressed at local, anatomically discrete locations of the brain

    A catalogue of omics biological ageing clocks reveals substantial commonality and associations with disease risk

    Get PDF
    Biological age (BA), a measure of functional capacity and prognostic of health outcomes that discriminates between individuals of the same chronological age (chronAge), has been estimated using a variety of biomarkers. Previous comparative studies have mainly used epigenetic models (clocks), we use ~1000 participants to compare fifteen omics ageing clocks, with correlations of 0.21-0.97 with chronAge, even with substantial sub-setting of biomarkers. These clocks track common aspects of ageing with 95% of the variance in chronAge being shared among clocks. The difference between BA and chronAge - omics clock age acceleration (OCAA) - often associates with health measures. One year’s OCAA typically has the same effect on risk factors/10-year disease incidence as 0.09/0.25 years of chronAge. Epigenetic and IgG glycomics clocks appeared to track generalised ageing while others capture specific risks. We conclude BA is measurable and prognostic and that future work should prioritise health outcomes over chronAge

    The evolution of HIV-1 reverse transcriptase in route to acquisition of Q151M multi-drug resistance is complex and involves mutations in multiple domains

    Get PDF
    Background: The Q151M multi-drug resistance (MDR) pathway in HIV-1 reverse transcriptase (RT) confers reduced susceptibility to all nucleoside reverse transcriptase inhibitors (NRTIs) excluding tenofovir (TDF). This pathway emerges after long term failure of therapy, and is increasingly observed in the resource poor world, where antiretroviral therapy is rarely accompanied by intensive virological monitoring. In this study we examined the genotypic, phenotypic and fitness correlates associated with the development of Q151M MDR in the absence of viral load monitoring.Results: Single-genome sequencing (SGS) of full-length RT was carried out on sequential samples from an HIV-infected individual enrolled in ART rollout. The emergence of Q151M MDR occurred in the order A62V, V75I, and finally Q151M on the same genome at 4, 17 and 37 months after initiation of therapy, respectively. This was accompanied by a parallel cumulative acquisition of mutations at 20 other codon positions; seven of which were located in the connection subdomain. We established that fourteen of these mutations are also observed in Q151M-containing sequences submitted to the Stanford University HIV database. Phenotypic drug susceptibility testing demonstrated that the Q151M-containing RT had reduced susceptibility to all NRTIs except for TDF. RT domain-swapping of patient and wild-type RTs showed that patient-derived connection subdomains were not associated with reduced NRTI susceptibility. However, the virus expressing patient-derived Q151M RT at 37 months demonstrated similar to 44% replicative capacity of that at 4 months. This was further reduced to similar to 22% when the Q151M-containing DNA pol domain was expressed with wild-type C-terminal domain, but was then fully compensated by coexpression of the coevolved connection subdomain.Conclusions: We demonstrate a complex interplay between drug susceptibility and replicative fitness in the acquisition Q151M MDR with serious implications for second-line regimen options. The acquisition of the Q151M pathway occurred sequentially over a long period of failing NRTI therapy, and was associated with mutations in multiple RT domains
    corecore