5,322 research outputs found

    Filament mechanics in a half-space via regularised Stokeslet segments

    Get PDF
    We present a generalisation of efficient numerical frameworks for modelling fluid-filament interactions via the discretisation of a recently-developed, non-local integral equation formulation to incorporate regularised Stokeslets with half-space boundary conditions, as motivated by the importance of confining geometries in many applications. We proceed to utilise this framework to examine the drag on slender inextensible filaments moving near a boundary, firstly with a relatively-simple example, evaluating the accuracy of resistive force theories near boundaries using regularised Stokeslet segments. This highlights that resistive force theories do not accurately quantify filament dynamics in a range of circumstances, even with analytical corrections for the boundary. However, there is the notable and important exception of movement in a plane parallel to the boundary, where accuracy is maintained. In particular, this justifies the judicious use of resistive force theories in examining the mechanics of filaments and monoflagellate microswimmers with planar flagellar patterns moving parallel to boundaries. We proceed to apply the numerical framework developed here to consider how filament elastohydrodynamics can impact drag near a boundary, analysing in detail the complex responses of a passive cantilevered filament to an oscillatory flow. In particular, we document the emergence of an asymmetric periodic beating in passive filaments in particular parameter regimes, which are remarkably similar to the power and reverse strokes exhibited by motile 9+2 cilia. Furthermore, these changes in the morphology of the filament beating, arising from the fluid-structure interactions, also induce a significant increase in the hydrodynamic drag of the filament.Comment: 21 pages, 9 figures. Supplementary Material available upon reques

    Viscous tubular-body theory for plane interfaces

    Get PDF
    Filaments are ubiquitous within the microscopic world, occurring in biological and industrial environments and displaying a varied dynamics. Their wide range of applications has spurred the development of a branch of asymptotics focused on the behaviour of filaments, called slender-body theory (SBT). Slender-body theories are computationally efficient and focus on the mechanics of an isolated fibre that is slender and not too curved. However, SBTs that work beyond these limits are needed to explore complex systems. Recently, we developed tubular-body theory (TBT), an approach like SBT that allows the hydrodynamic traction on any isolated fibre in a viscous fluid to be determined exactly. This paper extends TBT to model fibres near plane interfaces by performing a similar expansion on the single-layer boundary integrals (BIs) for bodies by a plane interface. This provides a well-behaved SBT inspired approach for fibres by interfaces with a similar versatility to the BIs but without the singular kernels. The derivation of the new theory, called tubular-body theory for interfaces (TBTi), also establishes a criterion for the convergence of the TBTi series representation. The TBTi equations are solved numerically using a approach similar to boundary element methods (BEMs), called TBTi-BEM, to investigate the properties of TBTi empirically. The TBTi-BEM is found to compare favourably with an existing BEM and the lubrication singularity on a sphere, suggesting TBTi is valid for all separations. Finally, we simulate the hydrodynamics of helices beneath a free interface and a plane wall to demonstrate the applicability of the technique.</p

    Viscous tubular-body theory for plane interfaces

    Get PDF
    Filaments are ubiquitous within the microscopic world, occurring in biological and industrial environments and displaying a varied dynamics. Their wide range of applications has spurred the development of a branch of asymptotics focused on the behaviour of filaments, called slender-body theory (SBT). Slender-body theories are computationally efficient and focus on the mechanics of an isolated fibre that is slender and not too curved. However, SBTs that work beyond these limits are needed to explore complex systems. Recently, we developed tubular-body theory (TBT), an approach like SBT that allows the hydrodynamic traction on any isolated fibre in a viscous fluid to be determined exactly. This paper extends TBT to model fibres near plane interfaces by performing a similar expansion on the single-layer boundary integrals (BIs) for bodies by a plane interface. This provides a well-behaved SBT inspired approach for fibres by interfaces with a similar versatility to the BIs but without the singular kernels. The derivation of the new theory, called tubular-body theory for interfaces (TBTi), also establishes a criterion for the convergence of the TBTi series representation. The TBTi equations are solved numerically using a approach similar to boundary element methods (BEMs), called TBTi-BEM, to investigate the properties of TBTi empirically. The TBTi-BEM is found to compare favourably with an existing BEM and the lubrication singularity on a sphere, suggesting TBTi is valid for all separations. Finally, we simulate the hydrodynamics of helices beneath a free interface and a plane wall to demonstrate the applicability of the technique.</p

    Regularised non-uniform segments and efficient no-slip elastohydrodynamics

    Get PDF
    The elastohydrodynamics of slender bodies in a viscous fluid have long been the source of theoretical investigation, being pertinent to the microscale world of ciliates and flagellates as well as to biological and engineered active matter more generally. Though recent works have overcome the severe numerical stiffness typically associated with slender elastohydrodynamics, employing both local and non-local couplings to the surrounding fluid, there is no framework of comparable efficiency that rigorously justifies its hydrodynamic accuracy. In this study, we combine developments in filament elastohydrodynamics with a recent slender-body theory, affording algebraic asymptotic accuracy to the commonly imposed no-slip condition on the surface of a slender filament of potentially non-uniform cross-sectional radius. Further, we do this whilst retaining the remarkable practical efficiency of contemporary elastohydrodynamic approaches, having drawn inspiration from the method of regularised Stokeslet segments to yield an efficient and flexible slender-body theory of regularised non-uniform segments

    Modelling mechanically dominated vasculature development

    Get PDF
    Vascular networks play a key role in the development, function, and survival of many organisms, facilitating transport of nutrients and other critical factors within and between systems. The development of these vessel networks has been thoroughly explored in a variety of in vivo, in vitro and in silico contexts. However, the role of interactions between the growing vasculature and its environment remains largely unresolved, particularly concerning mechanical effects. Motivated by this gap in understanding, we develop a computational framework that is tailored to exploring the role of the mechanical environment on the formation of vascular networks. Here, we describe, document, implement, and explore an agent-based modelling framework, resolving the growth of individual vessels and seeking to capture phenomenology and intuitive qualitative mechanisms. In our explorations, we demonstrate that such a model can successfully reproduce familiar network structures, whilst highlighting the roles that mechanical influences could play in vascular development. For instance, we illustrate how an external substrate could act as an effective shared memory for the periodic regrowth of vasculature. We also observe the emergence of a nuanced collective behaviour and clustered vessel growth, which results from mechanical characteristics of the external environment

    Automated identification of flagella from videomicroscopy via the medial axis transform

    Full text link
    Ubiquitous in eukaryotic organisms, the flagellum is a well-studied organelle that is well-known to be responsible for motility in a variety of organisms. Commonly necessitated in their study is the capability to image and subsequently track the movement of one or more flagella using videomicroscopy, requiring digital isolation and location of the flagellum within a sequence of frames. Such a process in general currently requires some researcher input, providing some manual estimate or reliance on an experiment-specific heuristic to correctly identify and track the motion of a flagellum. Here we present a fully-automated method of flagellum identification from videomicroscopy based on the fact that the flagella are of approximately constant width when viewed by microscopy. We demonstrate the effectiveness of the algorithm by application to captured videomicroscopy of Leishmania mexicana, a parasitic monoflagellate of the family Trypanosomatidae. ImageJ Macros for flagellar identification are provided, and high accuracy and remarkable throughput are achieved via this unsupervised method, obtaining results comparable in quality to previous studies of closely-related species but achieved without the need for precursory measurements or the development of a specialised heuristic, enabling in general the automated generation of digitised kinematic descriptions of flagellar beating from videomicroscopy.Comment: 10 pages, 5 figures. Author accepted manuscript. Supplementary Material available at https://doi.org/10.1038/s41598-019-41459-

    Community benefits or community bribes?:An experimental analysis of strategies for managing community perceptions of bribery surrounding the siting of renewable energy projects

    Get PDF
    The provision of financial incentives to local communities by energy developers has attracted cynicism across many localities, with some suggesting such community benefits are akin to “bribery.” The current study used an experimental design embedded within a community postal survey to explore whether potentially damaging effects of bribery rhetoric upon local support for a wind farm can be overcome through (a) portraying community benefits as a policy requirement (rather than a discretionary gesture by developers), and/or (b) the deployment of different discursive strategies by developers to manage their stake in the outcome of the project. Participants told about community benefits as being a policy requirement showed significantly higher support for the wind farm, an effect that was mediated by heightened perceptions of individually and collectively favorable outcomes from the development. We discuss our results in relation to their implications for government policy approaches to promoting renewable energy supply

    Are Small Urban Centers Magnets for Economic Growth?

    Get PDF
    This report estimates a model of county-level job growth and finds an effect of small urban centers on their regional economies

    Systematic parameterizations of minimal models of microswimming

    Get PDF
    Simple models are used throughout the physical sciences as a means of developing intuition, capturing phenomenology, and qualitatively reproducing observations. In studies of microswimming, simple force-dipole models are commonplace, arising generically as the leading-order, far-field descriptions of a range of complex biological and artificial swimmers. Though many of these swimmers are associated with intricate, time varying flow fields and changing shapes, we often turn to models with constant, averaged parameters for intuition, basic understanding, and back-of-the-envelope prediction. In this brief study, via an elementary multitimescale analysis, we examine whether the standard use of a priori-averaged parameters in minimal microswimmer models is justified, asking if their behavioural predictions qualitatively align with those of models that incorporate rapid temporal variation through simple extensions. In doing so, we find that widespread, seemingly innocuous choices of parameters can give rise to qualitatively incorrect conclusions from simple models, with the potential to alter our intuition for swimming on the microscale. Further, we highlight and exemplify how a straightforward asymptotic analysis of the non-autonomous models can result in effective, systematic parametrizations of minimal models of microswimming
    corecore