22 research outputs found

    Gut Microbiota Extracellular Vesicles as Signaling Molecules Mediating Host-Microbiota Communications

    No full text
    Over the past decade, gut microbiota dysbiosis has been linked to many health disorders; however, the detailed mechanism of this correlation remains unclear. Gut microbiota can communicate with the host through immunological or metabolic signalling. Recently, microbiota-released extracellular vesicles (MEVs) have emerged as significant mediators in the intercellular signalling mechanism that could be an integral part of microbiota-host communications. MEVs are small membrane-bound vesicles that encase a broad spectrum of biologically active compounds (i.e., proteins, mRNA, miRNA, DNA, carbohydrates, and lipids), thus mediating the horizontal transfer of their cargo across intra- and intercellular space. In this study, we provide a comprehensive and in-depth discussion of the biogenesis of microbial-derived EVs, their classification and routes of production, as well as their role in inter-bacterial and inter-kingdom signaling

    Evidence of the Dysbiotic Effect of Psychotropics on Gut Microbiota and Capacity of Probiotics to Alleviate Related Dysbiosis in a Model of the Human Colon

    No full text
    Growing evidence indicates that non-antibiotic therapeutics significantly impact human health by modulating gut microbiome composition and metabolism. In this study, we investigated the impact of two psychotropic drugs, aripiprazole and (S)-citalopram, on gut microbiome composition and its metabolic activity, as well as the potential of probiotics to attenuate related dysbiosis using an ex vivo model of the human colon. After 48 h of fermentation, the two psychotropics demonstrated distinct modulatory effects on the gut microbiome. Aripiprazole, at the phylum level, significantly decreased the relative abundances of Firmicutes and Actinobacteria, while increasing the proportion of Proteobacteria. Moreover, the families Lachnospiraceae, Lactobacillaceae, and Erysipelotrichaceae were also reduced by aripiprazole treatment compared to the control group. In addition, aripiprazole lowered the levels of butyrate, propionate, and acetate, as measured by gas chromatography (GC). On the other hand, (S)-citalopram increased the alpha diversity of microbial taxa, with no differences observed between groups at the family and genus level. Furthermore, a probiotic combination of Lacticaseibacillus rhamnosus HA-114 and Bifidobacterium longum R0175 alleviated gut microbiome alterations and increased the production of short-chain fatty acids to a similar level as the control. These findings provide compelling evidence that psychotropics modulate the composition and function of the gut microbiome, while the probiotic can mitigate related dysbiosis

    Survival and Interplay of γ-Aminobutyric Acid-Producing Psychobiotic Candidates with the Gut Microbiota in a Continuous Model of the Human Colon

    No full text
    Over decades, probiotic research has focused on their benefits to gut health. Recently, the gut microbiota has been proven to share bidirectional connections with the brain through the gut–brain axis. Therefore, the manipulation of this axis via probiotics has garnered interest. We have recently isolated and characterized in vitro probiotic candidates producing γ-aminobutyric acid (GABA), a major neuromodulator of the enteric nervous system. This study investigates the growth and competitiveness of selected GABA-producing probiotic candidates (Bifidobacterium animalis, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. bulgaricus) in the presence of human gut microbiota ex vivo in a model mimicking physiological and microbiological conditions of the human proximal colon. Supplementation with GABA-producing probiotic candidates did not affect the overall gut microbiota diversity over 48 h of treatment. However, these candidates modulated the microbiota composition, especially by increasing the Bacteroidetes population, a key gut microbe associated with anti-inflammatory activities. The level of microbiota-generated SCFAs within 12 h of treatment was also increased, compared to the control group. Results from this study demonstrate the probiotic potential of the tested GABA-producing bacteria and their impact on gut microbiota structure and metabolism, suggesting their suitability for gut health-promoting applications

    Dual Inhibition of Salmonella enterica and Clostridium perfringens by New Probiotic Candidates Isolated from Chicken Intestinal Mucosa

    No full text
    The poultry industry is the fastest-growing agricultural sector globally. With poultry meat being economical and in high demand, the end product’s safety is of importance. Globally, governments are coming together to ban the use of antibiotics as prophylaxis and for growth promotion in poultry. Salmonella and Clostridium perfringens are two leading pathogens that cause foodborne illnesses and are linked explicitly to poultry products. Furthermore, numerous outbreaks occur every year. A substitute for antibiotics is required by the industry to maintain the same productivity level and, hence, profits. We aimed to isolate and identify potential probiotic strains from the ceca mucosa of the chicken intestinal tract with bacteriocinogenic properties. We were able to isolate multiple and diverse strains, including a new uncultured bacterium, with inhibitory activity against Salmonella Typhimurium ATCC 14028, Salmonella Abony NCTC 6017, Salmonella Choleraesuis ATCC 10708, Clostridium perfringens ATCC 13124, and Escherichia coli ATCC 25922. The five most potent strains were further characterized for their probiotic potential (i.e., sensitivity to antibiotics and tolerance to gastrointestinal physicochemical conditions). Our analyzed lactobacilli strains exhibited some interesting probiotic features while being inhibitory against targeted pathogens

    Dual Inhibition of <i>Salmonella enterica</i> and <i>Clostridium perfringens</i> by New Probiotic Candidates Isolated from Chicken Intestinal Mucosa

    No full text
    The poultry industry is the fastest-growing agricultural sector globally. With poultry meat being economical and in high demand, the end product’s safety is of importance. Globally, governments are coming together to ban the use of antibiotics as prophylaxis and for growth promotion in poultry. Salmonella and Clostridium perfringens are two leading pathogens that cause foodborne illnesses and are linked explicitly to poultry products. Furthermore, numerous outbreaks occur every year. A substitute for antibiotics is required by the industry to maintain the same productivity level and, hence, profits. We aimed to isolate and identify potential probiotic strains from the ceca mucosa of the chicken intestinal tract with bacteriocinogenic properties. We were able to isolate multiple and diverse strains, including a new uncultured bacterium, with inhibitory activity against Salmonella Typhimurium ATCC 14028, Salmonella Abony NCTC 6017, Salmonella Choleraesuis ATCC 10708, Clostridium perfringens ATCC 13124, and Escherichia coli ATCC 25922. The five most potent strains were further characterized for their probiotic potential (i.e., sensitivity to antibiotics and tolerance to gastrointestinal physicochemical conditions). Our analyzed lactobacilli strains exhibited some interesting probiotic features while being inhibitory against targeted pathogens

    Salmonella enterica Prophage Sequence Profiles Reflect Genome Diversity and Can Be Used for High Discrimination Subtyping.

    Get PDF
    Non-typhoidal Salmonella is a leading cause of foodborne illness worldwide. Prompt and accurate identification of the sources of Salmonella responsible for disease outbreaks is crucial to minimize infections and eliminate ongoing sources of contamination. Current subtyping tools including single nucleotide polymorphism (SNP) typing may be inadequate, in some instances, to provide the required discrimination among epidemiologically unrelated Salmonella strains. Prophage genes represent the majority of the accessory genes in bacteria genomes and have potential to be used as high discrimination markers in Salmonella. In this study, the prophage sequence diversity in different Salmonella serovars and genetically related strains was investigated. Using whole genome sequences of 1,760 isolates of S. enterica representing 151 Salmonella serovars and 66 closely related bacteria, prophage sequences were identified from assembled contigs using PHASTER. We detected 154 different prophages in S. enterica genomes. Prophage sequences were highly variable among S. enterica serovars with a median ± interquartile range (IQR) of 5 ± 3 prophage regions per genome. While some prophage sequences were highly conserved among the strains of specific serovars, few regions were lineage specific. Therefore, strains belonging to each serovar could be clustered separately based on their prophage content. Analysis of S. Enteritidis isolates from seven outbreaks generated distinct prophage profiles for each outbreak. Taken altogether, the diversity of the prophage sequences correlates with genome diversity. Prophage repertoires provide an additional marker for differentiating S. enterica subtypes during foodborne outbreaks

    Changes of Gut-Microbiota-Liver Axis in Hepatitis C Virus Infection

    No full text
    The gut–liver-axis is a bidirectional coordination between the gut, including microbial residents, the gut microbiota, from one side and the liver on the other side. Any disturbance in this crosstalk may lead to a disease status that impacts the functionality of both the gut and the liver. A major cause of liver disorders is hepatitis C virus (HCV) infection that has been illustrated to be associated with gut microbiota dysbiosis at different stages of the disease progression. This dysbiosis may start a cycle of inflammation and metabolic disturbance that impacts the gut and liver health and contributes to the disease progression. This review discusses the latest literature addressing this interplay between the gut microbiota and the liver in HCV infection from both directions. Additionally, we highlight the contribution of gut microbiota to the metabolism of antivirals used in HCV treatment regimens and the impact of these medications on the microbiota composition. This review sheds light on the potential of the gut microbiota manipulation as an alternative therapeutic approach to control the liver complications post HCV infection
    corecore