2,637 research outputs found
Algerian Terrorism
These are the words of M. Jacques Soustelle, Governor General of French Algeria in 1955. He had just returned from viewing the bodies of dozens of massacred European settlers, who had looked lo him for the protection of their lives and property. This description of fatalism and despair dramatically portrays, aU that those who would apply terror hope to achieve
Supersymmetric Langevin equation to explore free energy landscapes
The recently discovered supersymmetric generalizations of Langevin dynamics
and Kramers equation can be utilized for the exploration of free energy
landscapes of systems whose large time-scale separation hampers the usefulness
of standard molecular dynamics techniques. The first realistic application is
here presented. The system chosen is a minimalist model for a short alanine
peptide exhibiting a helix-coil transition.Comment: 9 pages, 9 figures, RevTeX 4 v2: conclusive section enlarged,
references adde
Prediction of long and short time rheological behavior in soft glassy materials
We present an effective time approach to predict long and short time
rheological behavior of soft glassy materials from experiments carried out over
practical time scales. Effective time approach takes advantage of relaxation
time dependence on aging time that allows time-aging time superposition even
when aging occurs over the experimental timescales. Interestingly experiments
on variety of soft materials demonstrate that the effective time approach
successfully predicts superposition for diverse aging regimes ranging from
sub-aging to hyper-aging behaviors. This approach can also be used to predict
behavior of any response function in molecular as well as spin glasses.Comment: 13 pages, 4 figure
Quantum annealing of the Traveling Salesman Problem
We propose a path-integral Monte Carlo quantum annealing scheme for the
symmetric Traveling Salesman Problem, based on a highly constrained Ising-like
representation, and we compare its performance against standard thermal
Simulated Annealing. The Monte Carlo moves implemented are standard, and
consist in restructuring a tour by exchanging two links (2-opt moves). The
quantum annealing scheme, even with a drastically simple form of kinetic
energy, appears definitely superior to the classical one, when tested on a 1002
city instance of the standard TSPLIB.Comment: 5 pages, 2 figure
The Gentlest Ascent Dynamics
Dynamical systems that describe the escape from the basins of attraction of
stable invariant sets are presented and analyzed. It is shown that the stable
fixed points of such dynamical systems are the index-1 saddle points.
Generalizations to high index saddle points are discussed. Both gradient and
non-gradient systems are considered. Preliminary results on the nature of the
dynamical behavior are presented
Energy Landscape and Global Optimization for a Frustrated Model Protein
The three-color (BLN) 69-residue model protein was designed to exhibit frustrated folding. We investigate the energy landscape of this protein using disconnectivity graphs and compare it to a Go model, which is designed to reduce the frustration by removing all non-native attractive interactions. Finding the global minimum on a frustrated energy landscape is a good test of global optimization techniques, and we present calculations evaluating the performance of basin-hopping and genetic algorithms for this system.Comparisons are made with the widely studied 46-residue BLN protein.We show that the energy landscape of the 69-residue BLN protein contains several deep funnels, each of which corresponds to a different β-barrel structure
Topological methods for searching barriers and reaction paths
We present a family of algorithms for the fast determination of reaction
paths and barriers in phase space and the computation of the corresponding
rates. The method requires the reaction times be large compared to the
microscopic time, irrespective of the origin - energetic, entropic, cooperative
- of the timescale separation. It lends itself to temperature cycling as in
simulated annealing and to activation-relaxation routines. The dynamics is
ultimately based on supersymmetry methods used years ago to derive Morse
theory. Thus, the formalism automatically incorporates all relevant topological
information.Comment: 4 pages, 4 figures, RevTex
Stress release mechanisms for Cu on Pd(111) in the submonolayer and monolayer regimes
We study the strain relaxation mechanisms of Cu on Pd(111) up to the
monolayer regime using two different computational methodologies, basin-hopping
global optimization and energy minimization with a repulsive bias potential.
Our numerical results are consistent with experimentally observed
layer-by-layer growth mode. However, we find that the structure of the Cu layer
is not fully pseudomorphic even at low coverages. Instead, the Cu adsorbates
forms fcc and hcp stacking domains, separated by partial misfit dislocations.
We also estimate the minimum energy path and energy barriers for transitions
from the ideal epitaxial state to the fcc-hcp domain pattern.Comment: 4 pages, 4 figure
Deceptive signals of phase transitions in small magnetic clusters
We present an analysis of the thermodynamic properties of small transition
metal clusters and show how the commonly used indicators of phase transitions
like peaks in the specific heat or magnetic susceptibility can lead to
deceptive interpretations of the underlying physics. The analysis of the
distribution of zeros of the canonical partition function in the whole complex
temperature plane reveals the nature of the transition. We show that signals in
the magnetic susceptibility at positive temperatures have their origin at zeros
lying at negative temperatures.Comment: 4 pages, 5 figures, revtex4, for further information see
http://www.smallsystems.d
- …