4 research outputs found

    Estimating Groundwater Recharge in Fully Integrated pde-Based Hydrological Models

    Get PDF
    Groundwater recharge is the main forcing of regional groundwater flow. In traditional partial-differential-equation (pde)-based models that treat aquifers as separate compartments, groundwater recharge needs to be defined as a boundary condition or it is a coupling condition to other compartments. Integrated models that treat the vadose and phreatic zones as a continuum allow for a more sophisticated calculation of subsurface fluxes, as feedbacks between both zones are captured. However, they do not contain an explicit groundwater-recharge term so it needs to be estimated by post-processing. Groundwater recharge consists of changes in groundwater storage and of the flux crossing the water table, which can be calculated based on hydraulic gradients. We introduce a method to evaluate the change of groundwater storage by a time-cumulative water balance over the depth section of water table fluctuations, avoiding the use of a specific yield. We demonstrate the approach first by a simple 1-D vertical model that does not allow for lateral outflow and illustrates the ambiguity of computing groundwater recharge by different methods. We then apply the approach to a 3-D model with a complex topography and subsurface structure. The latter example shows that groundwater recharge is highly variable in space and time with notable differences between regional and local estimates. Local heterogeneity of topography or subsurface properties results in complex redistribution patterns of groundwater. In fully integrated models, river-groundwater exchange flow may severely bias the estimate of groundwater recharge. We, therefore, advise masking out groundwater recharge at river locations

    Estimating Groundwater Recharge in Fully Integrated pde ‐Based Hydrological Models

    No full text
    Groundwater recharge is the main forcing of regional groundwater flow. In traditional partial‐differential‐equation (pde)‐based models that treat aquifers as separate compartments, groundwater recharge needs to be defined as a boundary condition or it is a coupling condition to other compartments. Integrated models that treat the vadose and phreatic zones as a continuum allow for a more sophisticated calculation of subsurface fluxes, as feedbacks between both zones are captured. However, they do not contain an explicit groundwater‐recharge term so it needs to be estimated by post‐processing. Groundwater recharge consists of changes in groundwater storage and of the flux crossing the water table, which can be calculated based on hydraulic gradients. We introduce a method to evaluate the change of groundwater storage by a time‐cumulative water balance over the depth section of water table fluctuations, avoiding the use of a specific yield. We demonstrate the approach first by a simple 1‐D vertical model that does not allow for lateral outflow and illustrates the ambiguity of computing groundwater recharge by different methods. We then apply the approach to a 3‐D model with a complex topography and subsurface structure. The latter example shows that groundwater recharge is highly variable in space and time with notable differences between regional and local estimates. Local heterogeneity of topography or subsurface properties results in complex redistribution patterns of groundwater. In fully integrated models, river‐groundwater exchange flow may severely bias the estimate of groundwater recharge. We, therefore, advise masking out groundwater recharge at river locations

    Building a coupled data assimilation system for the atmosphere, land-surface and subsurface on the catchment scale

    No full text
    We present a data assimilation (DA) system for the atmosphere-land-surface-subsurface system on the catchment scale. The Neckar catchment in SW-Germany served as the specific case where the DA in combination with the coupled atmosphere-land surface-subsurface model TSMP was used. TSMP couples the atmospheric model COSMO, the land-surface model CLM and the hydrological model ParFlow to the DA framework PDAF. We will discuss how the ensemble system is set up in order to work properly and what issues we faced during our initial testing. For the atmosphere we found that it is important to have a good ensemble of lateral forcings as changing internal parameters for various parametrizations does not introduce sufficient variability on its own due to the rather small size of our domain. For the sub-surface the choice of parameters becomes most important and as such parameter estimation will be a valuable tool for improving DA results significantly. Finally, we are showing some first DA results with our system concerning soil moisture with two different assimilation methods with a fully coupled model setup. In the first assimilation scenario in-situ soil moisture data measured by cosmic ray probes are assimilated, while in the second assimilation scenario remotely sensed near surface soil moisture is assimilated. The first results are encouraging and we discuss additional planned simulation scenarios with the fully coupled atmosphere-land surface-subsurface modelling system as well as plans to test strongly coupled DA, where measurements are used to update states across compartments, possibly resulting in additional accuracy gain compared to traditional uncoupled DA.&#160;</p
    corecore