79 research outputs found

    Progressive changes in the properties of bone during soft tissue decomposition

    Get PDF
    Changes in bone characteristics during soft tissue putrefaction were investigated over 140 days, equating to between 638 and 1450 cumulative cooling degree days (CCDD) depending on ambient temperature using a porcine experimental model in surface and burial depositions. The hypothesis that changes observed in bone characteristics during soft tissue putrefaction could be utilised for possible forensic applications was proved. Human bones were tested for comparison. The techniques used were colorimetric analysis of staining, measurement of micro-crack lengths (in the order of 0.1 to 1.0 mm) on fractured bone surfaces under scanning electron microscopy, inductively coupled plasma optical emission spectroscopy elemental profiling, thermogravimetric analysis (TGA), zoological mass spectrometry profiling non-collagenous peptide content, and Vickers hardness testing. The findings pertaining to the experimental porcine bone samples were as follows. Stain colour did not equalise between periosteal and fractured cortical bone surfaces. The fracture is widely considered perimortem if said surfaces are homogeneous in colour and postmortem if different. Observed inconsistences in colour change limit the potential of this technique as a potential forensic test of postmortem interval (PMI). After 28 CCDD, shorter intersecting micro-cracks changed to longer linear micro-cracks tracking lamellae. A longitudinal to tangential Vickers hardness (HV) ratio of 1.5 to 1 associated with minimal decomposition indicated 250 CCDD or less elapsed. The same ratio associated with marked decomposition indicated 1450 CCDD or more elapsed. A ratio of less than 1:1 indicated 250 to 1450 CCDD. Decreases in iron, sodium and potassium concentrations associated with tissue fluids can determine if bone is in the early stages of decomposition. TGA correlation of water loss between 22 and 100˚C with observed changes in micro-crack lengths, HV, and elemental profiles suggested progressive dehydration as the underlying common factor. These techniques demonstrated some potential to be developed as forensic tests of PMI. As no correlation with PMI was evident with proteomic profiling of non-collagenous peptides, no such potential was demonstrated

    Progressive dehydration in decomposing bone: a potential tool for forensic anthropology

    Get PDF
    The aim of this pilot study was to determine whether collagen and/or water content of bone vary during soft tissue putrefaction by thermogravimetric analysis with a view to eventually developing a possible forensic application to determine post-mortem interval. Porcine bone decomposed in a shallow burial showed an approximate difference in average mass loss of 15  ± 8% when heated between 22 and 100 Β°C, compared to 14 Β± 3% for porcine bone decomposed in a surface deposition, equating to water loss. Mass loss showed peaks at 0, 250–500 and 1200–1500 cumulative cooling degree days’ (CCDD) deposition for the experimental porcine bone. Should these measurements prove consistent in future studies on a wider variety of porcine and eventually human skeletal elements, they may have potential to be corroborated with other data when determining post-mortem interval, especially with disarticulated bones. A downward trend in mass loss was apparent within shallow burial and surface deposition scenarios (inclusive of freeze-dried controls) for the thermolysis of collagen (and other proteins) between 220 and 650 Β°C during thermogravimetric analysis. This was inconsistent within the time frame examined (0–1450 cumulative cooling degree days), and so demonstrates less potential as an indicator of post-mortem interval during soft tissue putrefaction

    Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California.

    Get PDF
    Understanding recent biogeographic responses to climate change is fundamental for improving our predictions of likely future responses and guiding conservation planning at both local and global scales. Studies of observed biogeographic responses to 20th century climate change have principally examined effects related to ubiquitous increases in temperature - collectively termed a warming fingerprint. Although the importance of changes in other aspects of climate - particularly precipitation and water availability - is widely acknowledged from a theoretical standpoint and supported by paleontological evidence, we lack a practical understanding of how these changes interact with temperature to drive biogeographic responses. Further complicating matters, differences in life history and ecological attributes may lead species to respond differently to the same changes in climate. Here, we examine whether recent biogeographic patterns across California are consistent with a warming fingerprint. We describe how various components of climate have changed regionally in California during the 20th century and review empirical evidence of biogeographic responses to these changes, particularly elevational range shifts. Many responses to climate change do not appear to be consistent with a warming fingerprint, with downslope shifts in elevation being as common as upslope shifts across a number of taxa and many demographic and community responses being inconsistent with upslope shifts. We identify a number of potential direct and indirect mechanisms for these responses, including the influence of aspects of climate change other than temperature (e.g., the shifting seasonal balance of energy and water availability), differences in each taxon's sensitivity to climate change, trophic interactions, and land-use change. Finally, we highlight the need to move beyond a warming fingerprint in studies of biogeographic responses by considering a more multifaceted view of climate, emphasizing local-scale effects, and including a priori knowledge of relevant natural history for the taxa and regions under study

    Better working memory for non-social targets in infant siblings of children with Autism Spectrum Disorder

    Get PDF
    We compared working memory (WM) for location of social vs. non-social targets in infant siblings of children with Autism Spectrum Disorders (sibs-ASD, n=25) and typically developing children (sibs-TD, n=30) at 6.5 and 9 months of age. There was a significant interaction of risk group and target-type on WM, in which the sibs-ASD had better WM for non-social targets as compared to controls. There was no group by stimulus interaction on two non-memory measures. The results suggest that the increased competency of sibs-ASD in WM (creating, updating, and using transient representations) for non-social stimuli distinguishes them from sibs-TD by 9 months of age. This early emerging strength is discussed as a developmental pathway that may have implications for social attention and learning in children at risk for ASD

    Crystal Structure of UBA2ufd-Ubc9: Insights into E1-E2 Interactions in Sumo Pathways

    Get PDF
    Canonical ubiquitin-like proteins (UBLs) such as ubiquitin, Sumo, NEDD8, and ISG15 are ligated to targets by E1-E2-E3 multienzyme cascades. The Sumo cascade, conserved among all eukaryotes, regulates numerous biological processes including protein localization, transcription, DNA replication, and mitosis. Sumo conjugation is initiated by the heterodimeric Aos1-Uba2 E1 enzyme (in humans called Sae1-Uba2), which activates Sumo's C-terminus, binds the dedicated E2 enzyme Ubc9, and promotes Sumo C-terminal transfer between the Uba2 and Ubc9 catalytic cysteines. To gain insights into details of E1-E2 interactions in the Sumo pathway, we determined crystal structures of the C-terminal ubiquitin fold domain (ufd) from yeast Uba2 (Uba2ufd), alone and in complex with Ubc9. The overall structures of both yeast Uba2ufd and Ubc9 superimpose well on their individual human counterparts, suggesting conservation of fundamental features of Sumo conjugation. Docking the Uba2ufd-Ubc9 and prior full-length human Uba2 structures allows generation of models for steps in Sumo transfer from Uba2 to Ubc9, and supports the notion that Uba2 undergoes remarkable conformational changes during the reaction. Comparisons to previous structures from the NEDD8 cascade demonstrate that UBL cascades generally utilize some parallel E1-E2 interaction surfaces. In addition, the structure of the Uba2ufd-Ubc9 complex reveals interactions unique to Sumo E1 and E2. Comparison with a previous Ubc9-E3 complex structure demonstrates overlap between Uba2 and E3 binding sites on Ubc9, indicating that loading with Sumo and E3-catalyzed transfer to substrates are strictly separate steps. The results suggest mechanisms establishing specificity and order in Sumo conjugation cascades
    • …
    corecore