435 research outputs found

    Homotopy coherent theorems of Dold-Kan type

    Get PDF
    We establish a large class of homotopy coherent Morita-equivalences of Dold-Kan type relating diagrams with values in any weakly idempotent complete additive \infty-category; the guiding example is an \infty-categorical Dold-Kan correspondence between the \infty-categories of simplicial objects and connective coherent chain complexes. Our results generalize many known 1-categorical equivalences such as the classical Dold-Kan correspondence, Pirashvili's Dold-Kan type theorem for abelian Γ\Gamma-groups and, more generally, the combinatorial categorical equivalences of Lack and Street

    Magnetic resonance imaging analysis of the bioabsorbable Milagro™ interference screw for graft fixation in anterior cruciate ligament reconstruction

    Get PDF
    Ligament graft fixation with bioabsorbable interference screws is a standard procedure in cruciate ligament replacement. Previous screw designs may resorb incompletely, and can cause osteolysis and sterile cysts despite being implanted for several years. The aim of this study was to examine the in vivo degradation and biocompatibility of the new Milagro™ interference screw (Mitek, Norderstedt, Germany). The Milagro™ interference screw is made of 30% ß-TCP (TriCalcium phosphate) and 70% PLGA (Poly-lactic-co-glycolic acid). In the period between June 2005 and February 2006, 38 patients underwent graft fixation with Milagro™ screws in our hospital. Arthroscopic ACL reconstruction was performed using hamstring tendon grafts in all the patients. MR imaging was performed on 12 randomly selected patients out of the total of 38 at 3, 6 and 12 months after surgery. During the examination, the volume loss of the screw, tunnel enlargement, presence of osteolysis, fluid lines, edema and postoperative screw replacement by bone tissue were evaluated. There was no edema or signs of inflammation around the bone tunnels. At 3, 6 and 12 months, the tibial screws showed an average volume loss of 0, 8.1% (±7.9%) and 82.6% (±17.2%, P < 0.05), respectively. The femoral screws showed volume losses of 2.5% (±2.1%), 31.3% (±21.6%) and 92.02% (±6.3%, P < 0.05), respectively. The femoral tunnel enlargement was 47.4% (±43.8%) of the original bone tunnel volume after 12 months, and the mean tunnel volume of the tibial tunnel was −9.5% (±58.1%) compared to the original tunnel. Bone ingrowth was observed in all the patients. In conclusion, the resorption behaviour of the Milagro™ screw is closely linked to the graft healing process. The screws were rapidly resorbed after 6 months and, at 12 months, only the screw remnants were detectable. Moreover, the Milagro™ screw is biocompatible and osteoconductive, promoting bone ingrowth during resorption. Tunnel enlargement is not prevented in the first months but is reduced by bone ingrowth after 12 months

    Non-Compositional Term Dependence for Information Retrieval

    Full text link
    Modelling term dependence in IR aims to identify co-occurring terms that are too heavily dependent on each other to be treated as a bag of words, and to adapt the indexing and ranking accordingly. Dependent terms are predominantly identified using lexical frequency statistics, assuming that (a) if terms co-occur often enough in some corpus, they are semantically dependent; (b) the more often they co-occur, the more semantically dependent they are. This assumption is not always correct: the frequency of co-occurring terms can be separate from the strength of their semantic dependence. E.g. "red tape" might be overall less frequent than "tape measure" in some corpus, but this does not mean that "red"+"tape" are less dependent than "tape"+"measure". This is especially the case for non-compositional phrases, i.e. phrases whose meaning cannot be composed from the individual meanings of their terms (such as the phrase "red tape" meaning bureaucracy). Motivated by this lack of distinction between the frequency and strength of term dependence in IR, we present a principled approach for handling term dependence in queries, using both lexical frequency and semantic evidence. We focus on non-compositional phrases, extending a recent unsupervised model for their detection [21] to IR. Our approach, integrated into ranking using Markov Random Fields [31], yields effectiveness gains over competitive TREC baselines, showing that there is still room for improvement in the very well-studied area of term dependence in IR

    Internal lipid synthesis and vesicle growth as a step toward self-reproduction of the minimal cell

    Get PDF
    One of the major properties of the semi-synthetic minimal cell, as a model for early living cells, is the ability to self-reproduce itself, and the reproduction of the boundary layer or vesicle compartment is part of this process. A minimal bio-molecular mechanism based on the activity of one single enzyme, the FAS-B (Fatty Acid Synthase) Type I enzyme from Brevibacterium ammoniagenes, is encapsulated in 1-palmitoyl-2oleoyl-sn-glycero-3-phosphatidylcholine (POPC) liposomes to control lipid synthesis. Consequently molecules of palmitic acid released from the FAS catalysis, within the internal lumen, move toward the membrane compartment and become incorporated into the phospholipid bilayer. As a result the vesicle membranes change in lipid composition and liposome growth can be monitored. Here we report the first experiments showing vesicles growth by catalysis of one enzyme only that produces cell boundary from within. This is the prototype of the simplest autopoietic minimal cell

    Cell-Sized confinement in microspheres accelerates the reaction of gene expression

    Get PDF
    Cell-sized water-in-oil droplet covered by a lipid layer was used to understand how lipid membranes affect biochemical systems in living cells. Here, we report a remarkable acceleration of gene expression in a cell-sized water-in-oil droplet entrapping a cell-free translation system to synthesize GFP (green fluorescent protein). The production rate of GFP (VGFP) in each droplet remained almost constant at least for on the order of a day, which implies 0th-order reaction kinetics. Interestingly, VGFP was inversely proportional to radius of droplets (R) when R is under 50 μm, and VGFP in droplets with R ∼ 10 μm was more than 10 times higher than that in the bulk. The acceleration rates of GFP production in cell-sized droplets strongly depended on the lipid types. These results demonstrate that the membrane surface has the significant effect to facilitate protein production, especially when the scale of confinement is on the order of cell-size

    Closed reduction and percutaneus Kirschner wire fixation for the treatment of dislocated calcaneal fractures: surgical technique, complications, clinical and radiological results after 2–10 years

    Get PDF
    Introduction To reduce complications, a minimally invasive technique for the treatment of dislocated intraarticular fractures of the calcaneus was used. Therefore previously described closed reduction and internal fixation techniques were combined and modified. Materials and methods Sixty-seven out of 92 calcaneal fractures could be retrospectively evaluated with an average follow-up time of 5.7 years (minimum 2-10 years follow-up). For radiographic evaluation, plain radiographs and CT scans were obtained. The Zwipp score was used for clinical evaluation. Sanders type II, III and IV fractures were diagnosed. Results Length of surgery averaged 61 min (range 20-175 min). The incidence of subtalar arthritis was correlated to the severity of fracture. Bohler's angle was restored in 70.1% (47 of 67) of the cases. On the last follow-up evaluation the average Zwipp score was 130 points (range 48-186 points). The majority (77.7%) of patients were content with their treatment result. The rate of significant complications was 6.5%. Discussion Compared to open techniques the presented minimally invasive technique showed comparable results with a low rate of serious complications and is a viable alternative for the treatment of intraarticular, dislocated calcaneal fractures

    AlN overgrowth of nano-pillar-patterned sapphire with different offcut angle by metalorganic vapor phase epitaxy

    Get PDF
    We present overgrowth of nano-patterned sapphire with different offcut angles by metalorganic vapor phase epitaxy. Hexagonal arrays of nano-pillars were prepared via Displacement Talbot Lithography and dry-etching. 6.6 µm crack-free and fully coalesced AlN was grown on such substrates. Extended defect analysis comparing X-ray diffraction, electron channeling contrast imaging and selective defect etching revealed a threading dislocation density of about 109 cm−2. However, for c-plane sapphire offcut of 0.2° towards m direction the AlN surface shows step bunches with a height of 10 nm. The detrimental impact of these step bunches on subsequently grown AlGaN multi-quantum-wells is investigated by cathodoluminescence and transmission electron microscopy. By reducing the sapphire offcut to 0.1° the formation of step bunches is successfully suppressed. On top of such a sample an AlGaN-based UVC LED heterostructure is realized emitting at 265 nm and showing an emission power of 0.81 mW at 20 mA (corresponds to an external quantum efficiency of 0.86%)

    AlN overgrowth of nano-pillar-patterned sapphire with different offcut angle by metalorganic vapor phase epitaxy

    Get PDF
    We present overgrowth of nano-patterned sapphire with different offcut angles by metalorganic vapor phase epitaxy. Hexagonal arrays of nano-pillars were prepared via Displacement Talbot Lithography and dry-etching. 6.6 µm crack-free and fully coalesced AlN was grown on such substrates. Extended defect analysis comparing X-ray diffraction, electron channeling contrast imaging and selective defect etching revealed a threading dislocation density of about 109 cm-2. However, for c-plane sapphire offcut of 0.2° towards m direction the AlN surface shows step bunches with a height of 10 nm. The detrimental impact of these step bunches on subsequently grown AlGaN multi-quantum-wells is investigated by cathodoluminescence and transmission electron microscopy. By reducing the sapphire offcut to 0.1° the formation of step bunches is successfully suppressed. On top of such a sample an AlGaN-based UVC LED heterostructure is realized emitting at 265 nm and showing an emission power of 0.81 mW at 20 mA (corresponds to an external quantum efficiency of 0.86 %)
    corecore