681 research outputs found

    A new kind of McKay correspondence from non-Abelian gauge theories

    Full text link
    The boundary chiral ring of a 2d gauged linear sigma model on a K\"ahler manifold XX classifies the topological D-brane sectors and the massless open strings between them. While it is determined at small volume by simple group theory, its continuation to generic volume provides highly non-trivial information about the DD-branes on XX, related to the derived category Dâ™­(X)D^\flat(X). We use this correspondence to elaborate on an extended notion of McKay correspondence that captures more general than orbifold singularities. As an illustration, we work out this new notion of McKay correspondence for a class of non-compact Calabi-Yau singularities related to Grassmannians.Comment: 29 pages, harvmac(b), 2 fig

    About the morphology of dwarf spheroidal galaxies and their dark matter content

    Get PDF
    The morphological properties of the Carina, Sculptor and Fornax dwarfs are investigated using new wide field data with a total area of 29 square degrees. The stellar density maps are derived, hinting that Sculptor possesses tidal tails indicating interaction with the Milky Way. Contrary to previous studies we cannot find any sign of breaks in the density profiles for the Carina and Fornax dwarfs. The possible existence of tidal tails in Sculptor and of King limiting radii in Fornax and Carina are used to derive global M/L ratios, without using kinematic data. By matching those M/L ratios to kinematically derived values we are able to constrain the orbital parameters of the three dwarfs. Fornax cannot have M/L smaller than 3 and must be close to its perigalacticon now. The other extreme is Sculptor that needs to be on an orbit with an eccentricity bigger than 0.5 to be able to form tidal tails despite its kinematic M/L.Comment: 9 pages, 7 figures, accepted by A&

    Calculations for Mirror Symmetry with D-branes

    Full text link
    We study normal functions capturing D-brane superpotentials on several one- and two-parameter Calabi-Yau hypersurfaces and complete intersections in weighted projective space. We calculate in the B-model and interpret the results using mirror symmetry in the large volume regime, albeit without identifying the precise A-model geometry in all cases. We identify new classes of extensions of Picard-Fuchs equations, as well as a novel type of topology changing phase transition involving quantum D-branes. A 4-d domain wall which is obtained in one region of closed string moduli space from wrapping a four-chain interpolating between two Lagrangian submanifolds is, for other values of the parameters, represented by a disk ending on a single Lagrangian.Comment: 42 page

    A method to polarise antiprotons in storage rings and create polarised antineutrons

    Full text link
    An intense circularely polarised photon beam interacts with a cooled antiproton beam in a storage ring. Due to spin dependent absorption cross sections for the reaction gamma+antiproton > pi- + antineutron a built-up of polarisation of the stored antiprotons takes place. Figures-of-merit around 0.1 can be reached in principle over a wide range of antiproton energies. In this process antineutrons with Polarisation > 70% emerge. The method is presented for the case of 300 MeV/c cooled antiproton beam

    A Note on Computations of D-brane Superpotential

    Full text link
    We develop some computational methods for the integrals over the 3-chains on the compact Calabi-Yau 3-folds that plays a prominent role in the analysis of the topological B-model in the context of the open mirror symmetry. We discuss such 3-chain integrals in two approaches. In the first approach, we provide a systematic algorithm to obtain the inhomogeneous Picard-Fuchs equations. In the second approach, we discuss the analytic continuation of the period integral to compute the 3-chain integral directly. The latter direct integration method is applicable for both on-shell and off-shell formalisms.Comment: 61 pages, 5 figures; v2: typos corrected, minor changes, references adde

    D-Branes on K3-Fibrations

    Get PDF
    B-type D-branes are constructed on two different K3-fibrations over IP_1 using boundary conformal field theory at the rational Gepner points of these models. The microscopic CFT charges are compared with the Ramond charges of D-branes wrapped on holomorphic cycles of the corresponding Calabi-Yau manifold. We study in particular D4-branes and bundles localized on the K3 fibers, and find from CFT that each irreducible component of a bundle on K3 gains one modulus upon fibration over IP_1. This is in agreement with expectations and so provides a further test of the boundary CFT.Comment: 16p, harvmac, tables.tex; typos corrected, refs added, discussion about moduli spaces improve

    The cosmic evolution of the spatially-resolved star formation rate and stellar mass of the CALIFA survey

    Get PDF
    We investigate the cosmic evolution of the absolute and specific star formation rate (SFR, sSFR) of galaxies as derived from a spatially-resolved study of the stellar populations in a set of 366 nearby galaxies from the CALIFA survey. The analysis combines GALEX and SDSS images with the 4000 break, H_beta, and [MgFe] indices measured from the datacubes, to constrain parametric models for the SFH, which are then used to study the cosmic evolution of the star formation rate density (SFRD), the sSFR, the main sequence of star formation (MSSF), and the stellar mass density (SMD). A delayed-tau model, provides the best results, in good agreement with those obtained from cosmological surveys. Our main results from this model are: a) The time since the onset of the star formation is larger in the inner regions than in the outer ones, while tau is similar or smaller in the inner than in the outer regions. b) The sSFR declines rapidly as the Universe evolves, and faster for early than for late type galaxies, and for the inner than for the outer regions of galaxies. c) SFRD and SMD agree well with results from cosmological surveys. At z< 0.5, most star formation takes place in the outer regions of late spiral galaxies, while at z>2 the inner regions of the progenitors of the current E and S0 are the major contributors to SFRD. d) The inner regions of galaxies are the major contributor to SMD at z> 0.5, growing their mass faster than the outer regions, with a lookback time at 50% SMD of 9 and 6 Gyr for the inner and outer regions. e) The MSSF follows a power-law at high redshift, with the slope evolving with time, but always being sub-linear. f) In agreement with galaxy surveys at different redshifts, the average SFH of CALIFA galaxies indicates that galaxies grow their mass mainly in a mode that is well represented by a delayed-tau model, with the peak at z~2 and an e-folding time of 3.9 Gyr.Comment: 23 pages, 16 figures, 6 tables, accepted for publication in Astronomy & Astrophysics. *Abridged abstract
    • …
    corecore