1,578 research outputs found

    Extended active space CASSCF/MRSD CI calculations of the barrier height for the reaction: O + H2 yields OH + H

    Get PDF
    The convergence of the barrier height for the O + H2 yields OH + H reaction was studied as a function of the size of the active space and basis set completeness. The barrier height is rapidly convergent with respect to expansion of the active space. Addition of 2p yields 2p' correlation terms to the active space lowers the barrier to the O + H2 reaction by about 2.0 kcal/mole, but addition of 3d and other terms has little additional effect. Multireference singles and doubles contracted CI plus Davidson's correction calculations using a (5s5p3d2f1g/4s3p2d1f) basis set with a 5 sigma 2 pi active space lead to a barrier height of 12.7 kcal/mole. Including an estimate of the CI contraction error and basis set superposition error leads to 12.4 kcal/mole as the best estimate of the barrier height

    Computed barrier heights for H + CH2O yields CH3O yields CH2OH

    Get PDF
    The barrier heights (including zero-point effects) for H + CH2O yields CH3O and CH3O yields CH2OH have been computed using complete active space self consistent field (CASSCF)/gradient calculations to define the stationary point geometries and harmonic frequencies and internally contracted configuration-interaction (CCI) to refine the energetics. The computed barrier heights are 5.6 kcal/mol and 30.1 kcal/mol, respectively. The former barrier height compares favorably to an experimental activation energy of 5.2 kcal/mol

    Computed potential energy surfaces for chemical reactions

    Get PDF
    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes

    Theoretical characterization of the reaction CH3 +OH yields CH3OH yeilds products: The (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO channels

    Get PDF
    The potential energy surface (PES) for the CH3OH system has been characterized for the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels using complete-active-space self-consistent-field (CASSCF) gradient calculations to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration-interaction (CCI) calculations to refine the energetics. The (1)CH2 + H2O channel is found to have no barrier. The long range interaction is dominated by the dipole-dipole term, which orients the respective dipole moments parallel to each other but pointing in opposite directions. At shorter separations there is a dative bond structure in which a water lone pair donates into the empty a" orbital of CH2. Subsequent insertion of CH2 into an OH bond of water have barriers located at -5.2 kcal/mol and 1.7 kcal/mol, respectively, with respect to CH3 + OH. From comparison of the computed energetics of the reactants and products to known thermochemical data it is estimated that the computed PES is accurate to plus or minus 2 kcal/mol

    On nd bonding in the transition metal trimers: Comparison of Sc3 and Y3

    Get PDF
    CASSCF/CCI calculations are presented for the low-lying states of Y3. Comparison of the wave functions for Y3 and Sc3 indicates substantial 4d-5p hybridization in Y3, but little 3d-4p hybridization in Sc3. The increased 4d-5p hybridization leads to stabilization of 4dpi bonding with respect to 4dsigma bonding for equilateral triangle Y3, and also leads to 4d-5p bonding for linear geometries. These effects lead to a different ordering of states for equilateral triangle geometries and a smaller excitation energy to the linear configuration for Y3 as compared to Sc3

    Theoretical research program to study transition metal trimers and embedded clusters

    Get PDF
    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry

    Computed potential energy surfaces for chemical reactions

    Get PDF
    The work on the NH + NO system which was described in the last progress report was written up and a draft of the manuscript is included in the appendix. The appendix also contains a draft of a manuscript on an Ar + H + H surface. New work which was completed in the last six months includes the following: (1) calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction; (2) calculations for the NH2 + O reaction; (3) calculations for the CH3 + O2 reaction; and (4) calculations for CH3O and the two decomposition channels--CH2OH and H + H2CO. Detailed descriptions of this work will be given in manuscripts; however, brief descriptions of the CH3 + OH and CH3 + O2 projects are given

    Computed Potential Energy Surfaces for Chemical Reactions

    Get PDF
    A manuscript describing the calculations on the (1)CH2 + H2O, H2 + HCOH, and H2 + H2CO product channels in the CH3 + OH reaction, which were described in the last progress report, has been accepted for publication in J. Chem. Phys., and a copy of the manuscript is included in the appendix. The production of (1)CH2 in this reaction is important in hydrocarbon combustion since (1)CH2 is highly reactive and would be expected to insert into N2, possibly leading to a new source for prompt NO(x) (vide infra). During the last six months new calculations have been carried out for the NH2 + NO system, which is important in the thermal de-NO(x) process

    Characterization of the Minimum Energy Paths for the Ring Closure Reactions of C4H3 with Acetylene

    Get PDF
    The ring closure reaction of C4H3 with acetylene to give phenyl radical is one proposed mechanism for the formation of the first aromatic ring in hydrocarbon combustion. There are two low-lying isomers of C4H3; 1-dehydro-buta-l-ene-3-yne (n-C4H3) and 2-dehydro-buta-l-ene-3-yne (iso-C4H3). It has been proposed that only n-C4H3 reacts with acetylene to give phenyl radical, and since iso-C4H3 is more stable than n-C4H3, formation of phenyl radical by this mechanism is unlikely. We report restricted Hartree-Fock (RHF) plus singles and doubles configuration interaction calculations with a Davidson's correction (RHF+1+2+Q) using the Dunning correlation consistent polarized valence double zeta basis set (cc-pVDZ) for stationary point structures along the reaction pathway for the reactions of n-C4H3 and iso-C4H3 with acetylene. n-C4H3 plus acetylene (9.4) has a small entrance channel barrier (17.7) (all energetics in parentheses are in kcal/mol with respect to iso-C4H3 plus acetylene) and the subsequent closure steps leading to phenyl radical (-91.9) are downhill with respect to the entrance channel barrier. Iso-C4H3 Plus acetylene also has an entrance channel barrier (14.9) and there is a downhill pathway to 1-dehydro-fulvene (-55.0). 1-dehydro-fulvene can rearrange to 6-dehydro-fulvene (-60.3) by a 1,3-hydrogen shift over a barrier (4.0), which is still below the entrance channel barrier, from which rearrangement to phenyl radical can occur by a downhill pathway. Thus, both n-C4H3 and iso-C4H3 can react with acetylene to give phenyl radical with small barriers
    corecore