72 research outputs found

    Novel Papaverine Metal Complexes with Potential Anticancer Activities

    Get PDF
    Cancer is one of the leading causes of death worldwide. Although several potential therapeutic agents have been developed to efficiently treat cancer, some side effects can occur simultaneously. Papaverine, a non-narcotic opium alkaloid, is a potential anticancer drug that showed selective antitumor activity in various tumor cells. Recent studies have demonstrated that metal complexes improve the biological activity of the parent bioactive ligands. Based on those facts, herein we describe the synthesis of novel papaverine–vanadium(III), ruthenium(III) and gold(III) metal complexes aiming at enhancing the biological activity of papaverine drug. The structures of the synthesized complexes were characterized by various spectroscopic methods (IR, UV–Vis, NMR, TGA, XRD, SEM). The anticancer activity of synthesized metal complexes was evaluated in vitro against two types of cancer cell lines: human breast cancer MCF-7 cells and hepatocellular carcinoma HepG-2 cells. The results revealed that papaverine-Au(III) complex, among the synthesized complexes, possess potential antimicrobial and anticancer activities. Interestingly, the anticancer activity of papaverine–Au(III) complex against the examined cancer cell lines was higher than that of the papaverine alone, which indicates that Au-metal complexation improved the anticancer activity of the parent drug. Additionally, the Au complex showed anticancer activity against the breast cancer MCF-7 cells better than that of cisplatin. The biocompatibility experiments showed that Au complex is less toxic than the papaverine drug alone with IC50 ≈ 111 µg/mL. These results indicate that papaverine–Au(III) complex is a promising anticancer complex-drug which would make it a suitable candidate for further in vivo investigations.Peer Reviewe

    Ionic liquid-based polymer nanocomposites for sensors, energy, biomedicine and environmental applications:Roadmap to the future

    Get PDF
    Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical‐based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL‐based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL‐based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer‐based composites’ ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs‐based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy‐related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided

    Air Pollutants Removal Using Biofiltration Technique: A Challenge at the Frontiers of Sustainable Environment

    Get PDF
    [Image: see text] Air pollution is a central problem faced by industries during the production process. The control of this pollution is essential for the environment and living organisms as it creates harmful effects. Biofiltration is a current pollution management strategy that concerns removing odor, volatile organic compounds (VOCs), and other pollutants from the air. Recently, this approach has earned vogue globally due to its low-cost and straightforward technique, effortless function, high reduction efficacy, less energy necessity, and residual consequences not needing additional remedy. There is a critical requirement to consider sustainable machinery to decrease the pollutants arising within air and water sources. For managing these different kinds of pollutant reductions, biofiltration techniques have been utilized. The contaminants are adsorbed upon the medium exterior and are metabolized to benign outcomes through immobilized microbes. Biofiltration-based designs have appeared advantageous in terminating dangerous pollutants from wastewater or contaminated air in recent years. Biofiltration uses the possibilities of microbial approaches (bacteria and fungi) to lessen the broad range of compounds and VOCs. In this review, we have discussed a general introduction based on biofiltration and the classification of air pollutants based on different sources. The history of biofiltration and other mechanisms used in biofiltration techniques have been discussed. Further, the crucial factors of biofilters that affect the performance of biofiltration techniques have been discussed in detail. Finally, we concluded the topic with current challenges and future prospects

    Role of Silver Nanoparticle-Doped 2-Aminodiphenylamine Polymeric Material in the Detection of Dopamine (DA) with Uric Acid Interference

    Get PDF
    A viable electrochemical approach for the detection of dopamine (DA) in uric acid (UA) utilizing a silver nanoparticle-doped 2-aminodiphenylamine (AgNPs-2ADPA) electrode was invented. The electrochemical performance of DA showed that the incorporated electrode displayed outstanding electrocatalytic performance to the electrochemical oxidation of DA. In our study, the AgNPs-2ADPA exhibits remarkable catalytic activity, retaining high current value and resilience when employed as a working electrode component for electrocatalytic detection of DA. We have also utilized the bare and polymeric-2ADPA in DA detection for a comparison study. This method offers a facile route with extraordinary sensitivity, selectivity, and strength for the voltammetric detection of DA, even in the presence of UA and ascorbic acid (AA) as interferents, that can be employed for pharmaceutical and biological specimens

    New Mononuclear and Binuclear Cu(II), Co(II), Ni(II), and Zn(II) Thiosemicarbazone Complexes with Potential Biological Activity: Antimicrobial and Molecular Docking Study

    Get PDF
    Herein, we report the synthesis of eight new mononuclear and binuclear Co2+, Ni2+, Cu2+, and Zn2+ methoxy thiosemicarbazone (MTSC) complexes aiming at obtaining thiosemicarbazone complex with potent biological activity. The structure of the MTSC ligand and its metal complexes was fully characterized by elemental analysis, spectroscopic techniques (NMR, FTIR, UV-Vis), molar conductivity, thermogravimetric analysis (TG), and thermal differential analysis (DrTGA). The spectral and analytical data revealed that the obtained thiosemicarbazone-metal complexes have octahedral geometry around the metal center, except for the Zn2+-thiosemicarbazone complexes, which showed a tetrahedral geometry. The antibacterial and antifungal activities of the MTSC ligand and its (Co2+, Ni2+, Cu2+, and Zn2+) metal complexes were also investigated. Interestingly, the antibacterial activity of MTSC- metal complexes against examined bacteria was higher than that of the MTSC alone, which indicates that metal complexation improved the antibacterial activity of the parent ligand. Among different metal complexes, the MTSC- mono- and binuclear Cu2+ complexes showed significant antibacterial activity against Bacillus subtilis and Proteus vulgaris, better than that of the standard gentamycin drug. The in silico molecular docking study has revealed that the MTSC ligand could be a potential inhibitor for the oxidoreductase protein.Taif UniversityPeer Reviewe

    Synthesis and Characterization of Tetracycline Loaded Methionine-Coated NiFe2O4 Nanoparticles for Anticancer and Antibacterial Applications

    Get PDF
    In the present study, nickel ferrite (NiFe(2)O(4))-based smart magnetic nanoparticles were fabricated and coated with methionine. Physiochemical characterization of the obtained Met-NiFe(2)O(4) nanoparticles revealed the presence of methionine coating over the nanoparticle surface. Drug release study indicated that Tet-Met-NiFe(2)O(4) nanoparticles possess pH-responsive controlled drug release behavior for tetracycline (Tet). The drug loading content for Tet was found to be 0.27 mg/L of nanoparticles. In vitro cytotoxicity test showed that the Met-NiFe(2)O(4) nanoparticles is biocompatible. Moreover, this magnetic nanostructured material shown strong anticancer property as these nanomaterials significantly reduced the viability of A375 cells when compared to free Tet solution. In addition, Tet-Met-NiFe(2)O(4) nanoparticles also showed strong antibacterial activity against different bacterial pathogens

    4D printing of smart polymer nanocomposites: integrating graphene and acrylate based shape memory polymers

    Get PDF
    The ever-increasing demand for materials to have superior properties and satisfy functions in the field of soft robotics and beyond has resulted in the advent of the new field of four-dimensional (4D) printing. The ability of these materials to respond to various stimuli inspires novel applications and opens several research possibilities. In this work, we report on the 4D printing of one such Shape Memory Polymer (SMP) tBA-co-DEGDA (tert-Butyl Acrylate with diethylene glycol diacrylate). The novelty lies in establishing the relationship between the various characteristic properties (tensile stress, surface roughness, recovery time, strain fixity, and glass transition temperature) concerning the fact that the print parameters of the laser pulse frequency and print speed are governed in the micro-stereolithography (Micro SLA) method. It is found that the sample printed with a speed of 90 mm/s and 110 pulses/s possessed the best batch of properties, with shape fixity percentages of about 86.3% and recovery times as low as 6.95 s. The samples built using the optimal parameters are further subjected to the addition of graphene nanoparticles, which further enhances all the mechanical and surface properties. It has been observed that the addition of 0.3 wt.% of graphene nanoparticles provides the best results

    Zinc associated nanomaterials and their intervention in emerging respiratory viruses:Journey to the field of biomedicine and biomaterials

    Get PDF
    Respiratory viruses represent a severe public health risk worldwide, and the research contribution to tackle the current pandemic caused by the SARS-CoV-2 is one of the main targets among the scientific community. In this regard, experts from different fields have gathered to confront this catastrophic pandemic. This review illustrates how nanotechnology intervention could be valuable in solving this difficult situation, and the state of the art of Zn-based nanostructures are discussed in detail. For virus detection, learning from the experience of other respiratory viruses such as influenza, the potential use of Zn nanomaterials as suitable sensing platforms to recognize the S1 spike protein in SARS-CoV-2 are shown. Furthermore, a discussion about the antiviral mechanisms reported for ZnO nanostructures is included, which can help develop surface disinfectants and protective coatings. At the same time, the properties of Zn-based materials as supplements for reducing viral activity and the recovery of infected patients are illustrated. Within the scope of noble adjuvants to improve the immune response, the ZnO NPs properties as immunomodulators are explained, and potential prototypes of nanoengineered particles with metallic cations (like Zn(2+)) are suggested. Therefore, using Zn-associated nanomaterials from detection to disinfection, supplementation, and immunomodulation opens a wide area of opportunities to combat these emerging respiratory viruses. Finally, the attractive properties of these nanomaterials can be extrapolated to new clinical challenges
    corecore