11 research outputs found

    Physiological and Biochemical Characterization of Three Nucleoside Diphosphate Kinase Isozymes from Rice (Oryza sativaL.)

    Get PDF
    Nucleoside diphosphate kinase (NDPK) is a ubiquitous enzyme that catalyzes the transfer of the γ-phosphoryl group from a nucleoside triphosphate to a nucleoside diphosphate. In this study, we examined the subcellular localization, tissue-specific gene expression, and enzymatic characteristics of three rice NDPK isozymes (OsNDPK1-OsNDPK3). Sequence comparison of the three OsNDPKs suggested differential subcellular localization. Transient expression of green fluorescence protein-fused proteins in onion cells indicated that OsNDPK2 and OsNDPK3 are localized to plastid and mitochondria respectively, while OsNDPK1 is localized to the cytosol. Expression analysis indicated that all the OsNDPKs are expressed in the leaf, leaf sheath, and immature seeds, except for OsNDPK1, in the leaf sheath. Recombinant OsNDPK2 and OsNDPK3 showed lower optimum pH and higher stability under acidic pH than OsNDPK1. In ATP formation, all the OsNDPKs displayed lower K(m) values for the second substrate, ADP, than for the first substrate, NTP, and showed lowest and highest K(m) values for GTP and CTP respectively

    Identification of a β-glucosidase hydrolyzing tuberonic acid glucoside in rice (Oryza sativa L.)

    Get PDF
    Tuberonic acid (TA) and its glucoside (TAG) have been isolated from potato (Solanum tuberosum L) leaflets and shown to exhibit tuber-inducing properties. These compounds were reported to be biosynthesized from jasmonic acid (JA) by hydroxylation and subsequent glycosylation, and to be contained in various plant species. Here we describe the in vivo hydrolytic activity of TAG in rice. In this study, the TA resulting from TAG was not converted into JA. Tuberonic acid glucoside (TAG)-hydrolyzing β-glucosidase, designated OsTAGG1, was purified from rice by six purification steps with an similar to 4300-fold purification. The purified enzyme migrated as a single band on native PAGE, but as two bands with 4300-fold purification. The purified enzyme migrated as a single band on native PAGE, but as two bands with molecular masses of 42 and 26 kDa on SDS-PAGE. The results from N-terminal sequencing and peptide mass fingerprinting of both polypeptides suggested that the two bands were derived from a single polypeptide, which is a member of glycosyl hydrolase family 1. In the native enzyme, the Km and Vmax values of TAG were 31.7 μM and and 14.7 μmol/min/mg, respectively. OsTAGG1 preferentially hydrolyzed TAG and methyl TAG. Here we report that OsTAGG1 is a specific β-glucosidase hydrolyzing TAG, which releases physiologically active TA

    OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling

    Get PDF
    The synthesis of JA-Ile was catalysed by JA-Ile synthase, which is a member of the group I GH3 family of proteins. Here, we showed evidence that OsGH3.5 (OsJAR1) and OsGH3.3 (OsJAR2) are the functional JA-Ile synthases in rice, using recombinant proteins. The expression levels of OsJAR1 and OsJAR2 were induced in response to wounding with the concomitant accumulation of JA-Ile. In contrast, only the expression of OsJAR1 was associated with the accumulation of JA-Ile after blast infection. Our data suggest that these two JA-Ile synthases are differentially involved in the activation of JA signalling in response to wounding and pathogen challenge in rice

    Identification of Rice β-Glucosidase with High Hydrolytic Activity towards Salicylic Acid β-D-Glucoside

    Get PDF
    β-Glucosidases (EC 3.2.1.21) split β-glucosidic linkages at the non-reducing end of glucosides and oligosaccharides to release β-D-glucose. One of the important functions of plant β-glucosidase is deglucosylation of inactive glucosides of phytohormones to regulate levels of active hormones. Tuberonic acid is a jasmonate-related compound that shows tuber-inducing activity in the potato. We have identified two enzymes, OsTAGG1 and OsTAGG2, that have hydrolytic activity towards tuberonic acid β-D-glucoside in rice (Oryza sativa L.). The expression of OsTAGG2 is upregulated by wounding and by methyl jasmonate, suggesting that this isozyme is involved in responses to biotic stresses and wounding, but the physiological substrate of OsTAGG2 remains ambiguous. In this study, we produced recombinant OsTAGG2 in Pichia pastoris (rOsTAGG2P), and investigated its substrate specificity in detail. From 1 L of culture medium, 2.1 mg of purified recombinant enzyme was obtained by ammonium sulfate precipitation and Ni-chelating column chromatography. The specific activity of rOsTAGG2P (182 U/mg) was close to that of the native enzyme (171 U/mg), unlike recombinant OsTAGG2 produced in Escherichia coli, which had approximately 3-fold lower specific activity than the native enzyme. The optimum pH and temperature for rOsTAGG2P were pH 3.4 and 60 °C. After pH and heat treatments, the enzyme retained its original activity in a pH range of 3.4-9.8 and below 55 °C. Native OsTAGG2 and rOsTAGG2P showed 4.5-4.7-fold higher activities towards salicylic acid β-D-glucoside, an inactive storage-form of salicylic acid, than towards tuberonic acid β-D-glucoside (TAG), although OsTAGG2 was originally isolated from rice based on TAG-hydrolytic activity

    Difference in cesium accumulation among rice cultivars grown in the paddy field in Fukushima Prefecture in 2011 and 2012

    No full text
    After the accident of the Fukushima 1 Nuclear Power Plant in March 2011, radioactive cesium was released and paddy fields in a wide area including Fukushima Prefecture were contaminated. To estimate the levels of radioactive Cs accumulation in rice produced in Fukushima, it is crucial to obtain the actual data of Cs accumulation levels in rice plants grown in the actual paddy field in Fukushima City. We herein conducted a two-year survey in 2011 and 2012 of radioactive and non-radioactive Cs accumulation in rice using a number of rice cultivars grown in the paddy field in Fukushima City. Our study demonstrated a substantial variation in Cs accumulation levels among the cultivars of rice
    corecore