293 research outputs found

    Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulses implementations

    Full text link
    We introduce a new class of quantum quantum key distribution protocols, tailored to be robust against photon number splitting (PNS) attacks. We study one of these protocols, which differs from the BB84 only in the classical sifting procedure. This protocol is provably better than BB84 against PNS attacks at zero error.Comment: 4 pages, 2 figure

    Tight focusing of plane waves from micro-fabricated spherical mirrors

    Full text link
    We derive a formula for the light field of a monochromatic plane wave that is truncated and reflected by a spherical mirror. Our formula is valid even for deep mirrors, where the aperture radius approaches the radius of curvature. We apply this result to micro-fabricated mirrors whose size scales are in the range of tens to hundreds of wavelengths, and show that sub-wavelength spot sizes can be achieved. This opens up the possibility of scalable arrays of tightly focused optical dipole traps without the need for high-performance optical systems.Comment: 8 pages, 5 color figures, 1 .sty file; changes made in response to referee comments; published in Optics Expres

    Nondegenerate parametric down conversion in coherently prepared two-level atomic gas

    Full text link
    We describe parametric down conversion process in a two-level atomic gas, where the atoms are in a superposition state of relevant energy levels. This superposition results in splitting of the phase matching condition into three different conditions. Another, more important, peculiarity of the system under discussion is the nonsaturability of amplification coefficients with increasing pump wave intensity, under "sideband" generation conditions

    Experimental demonstration of phase measurement precision beating standard quantum limit by projection measurement

    Full text link
    We propose and demonstrate experimentally a projection scheme to measure the quantum phase with a precision beating the standard quantum limit. The initial input state is a twin Fock state N,N>|N,N> proposed by Holland and Burnett [Phys. Rev. Lett. {\bf 71}, 1355 (1993)] but the phase information is extracted by a quantum state projection measurement. The phase precision is about 1.4/N1.4/N for large photon number NN, which approaches the Heisenberg limit of 1/N. Experimentally, we employ a four-photon state from type-II parametric down-conversion and achieve a phase uncertainty of 0.291±0.0010.291\pm 0.001 beating the standard quantum limit of 1/N=1/21/\sqrt{N} = 1/2 for four photons.Comment: 5 figure

    Bichromatic Driving of a Solid State Cavity QED System

    Full text link
    The bichromatic driving of a solid state cavity quantum electrodynamics system is used to probe cavity dressed state transitions and observe coherent interaction between the system and the light field. We theoretically demonstrate the higher order cavity-dressed states, supersplitting, and AC stark shift in a solid state system comprised of a quantum dot strongly coupled to a photonic crystal cavity for on- and far off-resonant cases. For the off-resonant case, phonons mediate off-resonant coupling between the quantum dot and the photonic resonator, a phenomenon unique to solid state cavity quantum electrodynamics.Comment: 8 pages 6 figure

    Superconducting nanowire photon number resolving detector at telecom wavelength

    Full text link
    The optical-to-electrical conversion, which is the basis of optical detectors, can be linear or nonlinear. When high sensitivities are needed single-photon detectors (SPDs) are used, which operate in a strongly nonlinear mode, their response being independent of the photon number. Nevertheless, photon-number resolving (PNR) detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication, the PNR functionality is key to many protocols for establishing, swapping and measuring entanglement, and can be used to detect photon-number-splitting attacks. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, e.g. in long-distance optical communications, fluorescence spectroscopy, optical time-domain reflectometry. We demonstrate here a PNR detector based on parallel superconducting nanowires and capable of counting up to 4 photons at telecommunication wavelengths, with ultralow dark count rate and high counting frequency
    corecore