35 research outputs found

    A nutritional memory effect counteracts the benefits of dietary restriction in old mice

    Get PDF
    Dietary restriction (DR) during adulthood can greatly extend lifespan and improve metabolic health in diverse species. However, whether DR in mammals is still effective when applied for the first time at old age remains elusive. Here, we report results of a late-life DR-switch experiment using 800 mice. Female mice aged 24 months were switched from an ad libitum (AL) diet to DR or vice versa. Strikingly, the switch from DR to AL acutely increases mortality, whereas the switch from AL to DR causes only a weak and gradual increase in survival, suggesting the body has a memory of earlier nutrition. RNA sequencing in liver and brown and white adipose tissue (BAT and WAT, respectively) demonstrates a largely refractory transcriptional and metabolic response in fat tissue to DR after an AL diet, particularly in WAT, and a proinflammatory signature in aged preadipocytes, which is prevented by chronic DR feeding. Our results provide evidence for a ‘nutritional memory’ as a limiting factor for DR-induced longevity and metabolic remodelling of WAT in mammals

    3D Growth of Cancer Cells Elicits Sensitivity to Kinase Inhibitors but Not Lipid Metabolism Modifiers

    Get PDF
    Tumor cells exhibit altered lipid metabolism compared with normal cells. Cell signaling kinases are important for regulating lipid synthesis and energy storage. How upstream kinases regulate lipid content, versus direct targeting of lipid-metabolizing enzymes, is currently unexplored. We evaluated intracellular lipid concentrations in prostate and breast tumor spheroids, treated with drugs directly inhibiting metabolic enzymes fatty acid synthase (FASN), acetyl-CoA carboxylase (ACC), diacylglyceride acyltransferase (DGAT), and pyruvate dehydrogenase kinase (PDHK), or cell signaling kinase enzymes PI3K, AKT, and mTOR with lipidomic analysis. We assessed whether baseline lipid profiles corresponded to inhibitors' effectiveness in modulating lipid profiles in three-dimensional (3D) growth and their relationship to therapeutic activity. Inhibitors against PI3K, AKT, and mTOR significantly inhibited MDA-MB-468 and PC3 cell growth in two-dimensional (2D) and 3D spheroid growth, while moderately altering lipid content. Conversely, metabolism inhibitors against FASN and DGAT altered lipid content most effectively, while only moderately inhibiting growth compared with kinase inhibitors. The FASN and ACC inhibitors' effectiveness in MDA-MB-468, versus PC3, suggested the former depended more on synthesis, whereas the latter may salvage lipids. Although baseline lipid profiles did not predict growth effects, lipid changes on therapy matched the growth effects of FASN and DGAT inhibitors. Several phospholipids, including phosphatidylcholine, were also upregulated following treatment, possibly via the Kennedy pathway. As this promotes tumor growth, combination studies should include drugs targeting it. Two-dimensional drug screening may miss important metabolism inhibitors or underestimate their potency. Clinical studies should consider serial measurements of tumor lipids to prove target modulation. Pretherapy tumor classification by de novo lipid synthesis versus uptake may help demonstrate efficacy

    Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology

    Get PDF
    The functions and morphology of cellular membranes are intimately related and depend not only on their protein content but also on the repertoire of lipids that comprise them. In the absence of in vivo data on lipid asymmetry in endomembranes, it has been argued that motors, scaffolding proteins or integral membrane proteins rather than non-lamellar bilayer lipids such as diacylglycerol (DAG), are responsible for shaping of organelles, local membrane curvature and fusion. The effects of direct alteration of levels of such lipids remain predominantly uninvestigated. Diacylglycerol (DAG) is a well documented second messenger. Here we demonstrate two additional conserved functions of DAG: a structural role in organelle morphology, and a role in localised extreme membrane curvature required for fusion for which proteins alone are insufficient. Acute and inducible DAG depletion results in failure of the nuclear envelope (NE) to reform at mitosis and reorganisation of the ER into multi-lamellar sheets as revealed by correlative light and electron microscopy and 3D reconstructions. Remarkably, depleted cells divide without a complete NE, and unless rescued by 1,2 or 1,3 DAG soon die. Attenuation of DAG levels by enzyme microinjection into echinoderm eggs and embryos also results in alterations of ER morphology and nuclear membrane fusion. Our findings demonstrate that DAG is an in vivo modulator of organelle morphology in mammalian and echinoderm cells, indicating a fundamental role conserved across the deuterostome superphylum

    Autotaxin-lysophosphatidic acid receptor signalling regulates hepatitis C virus replication

    Get PDF
    Background & Aims Chronic hepatitis C is a global health problem with an estimated 170 million hepatitis C virus (HCV) infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX, gene name: ENPP2) is a phospholipase with diverse roles in the physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood. Methods In vitro hepatocyte and ex vivo liver culture systems along with chimeric humanized liver mice and HCC tissue enabled us to assess the interplay between ATX and the HCV life cycle. Results HCV infection increased hepatocellular ATX RNA and protein expression. HCV infection stabilizes hypoxia inducible factors (HIFs) and we investigated a role for these transcription factors to regulate ATX. In vitro studies show that low oxygen increases hepatocellular ATX expression and transcriptome analysis showed a positive correlation between ATX mRNA levels and hypoxia gene score in HCC tumour tissue associated with HCV and other aetiologies. Importantly, inhibiting ATX-lysophosphatidic acid (LPA) signalling reduced HCV replication, demonstrating a positive role for this phospholipase in the viral life cycle. LPA activates phosphoinositide-3-kinase that stabilizes HIF-1α and inhibiting the HIF signalling pathway abrogates the pro-viral activity of LPA. Conclusions Our data support a model where HCV infection increases ATX expression which supports viral replication and HCC progression. Lay summary Chronic hepatitis C is a global health problem with infected individuals at risk of developing liver disease that can progress to hepatocellular carcinoma. Autotaxin generates the biologically active lipid lysophosphatidic acid that has been reported to play a tumorigenic role in a wide number of cancers. In this study we show that hepatitis C virus infection increases autotaxin expression via hypoxia inducible transcription factor and provides an environment in the liver that promotes fibrosis and liver injury. Importantly, we show a new role for lysophosphatidic acid in positively regulating hepatitis C virus replication.Research in the McKeating laboratory was funded by the MRC, NIHR Birmingham Liver BRU, EU FP7 PathCO and H2020 grant Hep-CAR. Research in the Wakelam lab is supported by BBSRC and Hep-CAR. Stephanie Roessler was supported by Hep-CAR, DFG grant RO4673, the Olympia-Morata Programme, a Brigitte-Schieben-Lange Fellowship and a Heidelberg School of Oncology Fellowship

    DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling

    Get PDF

    Glucagon Receptor Number And The Mhc

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62898/1/323586b0.pd

    G-proteins and the inositol cycle in Dictyostelium discoideum

    No full text
    The inositol cycle in Dictyostelium disocideum was studied both in vitro and in vivo. The results are compared to the inositol cycle as it is known from higher eukaryotes. Although there is a strong resemblance the cycles are different at some essential points. In comparison to higher eukaryotes, in the cycle in D. discoideum the inositol 1,4,5-trisphosphate [Ins(1,4,5) P3] kinase appears to be absent and there are additional phosphatases which hydrolyse Ins(1,4,5)P3 via inositol 4,5-bisphosphate [Ins(4,5)P2] to inositol 4-phosphate (Ins4P). The function of the receptor-stimulated inositol cycle was elucidated using mutants from the fgd A complementation group, which are defective in the G-protein alpha-subunit, responsible for the activation of phosphoinositidase C. These mutants show defects in both chemotaxis and differentiation, suggesting that the stimulation of phosphoinositidase C is the major sensory transduction pathway in D. discoideum
    corecore