323 research outputs found

    Large magnetoresistance in the antiferromagnetic semi-metal NdSb

    Full text link
    There has been considerable interest in topological semi-metals that exhibit extreme magnetoresistance (XMR). These have included materials lacking inversion symmetry such as TaAs, as well Dirac semi-metals such as Cd3As2. However, it was reported recently that LaSb and LaBi also exhibit XMR, even though the rock-salt structure of these materials has inversion symmetry, and the band-structure calculations do not show a Dirac dispersion in the bulk. Here, we present magnetoresistance and specific heat measurements on NdSb, which is isostructural with LaSb. NdSb has an antiferromagnetic groundstate, and in analogy with the lanthanum monopnictides, is expected to be a topologically non-trivial semi-metal. We show that NdSb has an XMR of 10^4 %, even within the AFM state, illustrating that XMR can occur independently of the absence of time reversal symmetry breaking in zero magnetic field. The persistence of XMR in a magnetic system offers promise of new functionality when combining topological matter with electronic correlations. We also find that in an applied magnetic field below the Neel temperature there is a first order transition, consistent with evidence from previous neutron scattering work.Comment: 5 pages, 6 figure

    Viscosity measurements on Ionic liquids : a cautionary tale

    Get PDF
    The vibrating-wire viscometer has proven to be an exceedingly effective means of determining the viscosity of liquids over a wide range of temperature and pressure. The instrument has a long history but a variety of technological and theoretical developments over a number of years have improved its precision and most recently have enabled absolute measurements of high accuracy. However, the nature of the electrical measurements required for the technique has inhibited its widespread use for electrically conducting liquids so that there have been only a limited number of measurements. In the particular context of ionic liquids, which have themselves attracted considerable attention, this is unfortunate because it has meant that one primary measurement technique has seldom been employed for studies of their viscosity. In the last 2 years systematic efforts have been made to explore the applicability of the vibrating-wire technique by examining a number of liquids of increasing electrical conductivity. These extensions have been successful. However, in the process we have had cause to review previous studies of the viscosity and density of the same liquids at moderate temperatures and pressures and significant evidence has been accumulated to cause concern about the application of a range of viscometric techniques to these particular fluids. Because the situation is reminiscent of that encountered for a new set of environmentally friendly refrigerants at the end of the last decade, in this paper the experimental methods employed with these liquids have been reviewed which leads to recommendations for the handling of these materials that may have consequences beyond viscometric measurements. In the process new viscosity and density data for 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide [C6mim][NTf2], 1-ethyl-3-methylimidazolium ethyl sulfate [C2mim][EtSO4], and 1-ethyl-3-methylpyridinium ethyl sulfate [C2mpy][EtSO4] have been obtained
    • …
    corecore