143 research outputs found

    Generation and Characterization of the Anp32e-Deficient Mouse

    Get PDF
    Background: Accumulated literature suggests that the acidic nuclear phosphoprotein 32 kilodalton (Anp32) proteins control multiple cellular activities through different molecular mechanisms. Like other Anp32 family members, Anp32e (a.k.a. Cpd1, PhapIII) has been conserved throughout vertebrate evolution, suggesting that it has an important function in organismal survival. Principal Findings: Here, we demonstrate that the Anp32e gene can be deleted in mice without any apparent effect on their wellbeing. No defects in thymocyte apoptosis in response to various stresses, fibroblast growth, gross behaviour, physical ability, or pathogenesis were defined. Furthermore, combined deletion of Anp32a and Anp32e also resulted in a viable and apparently healthy mouse. Significance: These results provide evidence that significant functional redundancy exists among Anp32 family members

    Survivin Loss in Thymocytes Triggers p53-mediated Growth Arrest and p53-independent Cell Death

    Get PDF
    Because survivin-null embryos die at an early embryonic stage, the role of survivin in thymocyte development is unknown. We have investigated the role by deleting the survivin gene only in the T lineage and show here that loss of survivin blocks the transition from CD4− CD8− double negative (DN) thymocytes to CD4+ CD8+ double positive cells. Although the pre–T cell receptor signaling pathway is intact in survivin-deficient thymocytes, the cells cannot respond to its signals. In response to proliferative stimuli, cycling survivin-deficient DN cells exhibit cell cycle arrest, a spindle formation defect, and increased cell death. Strikingly, loss of survivin activates the tumor suppressor p53. However, the developmental defects caused by survivin deficiency cannot be rescued by p53 inactivation or introduction of Bcl-2. These lines of evidence indicate that developing thymocytes depend on the cytoprotective function of survivin and that this function is tightly coupled to cell proliferation but independent of p53 and Bcl-2. Thus, survivin plays a critical role in early thymocyte development

    Can We Calculate Mean Arterial Pressure in Humans?

    Get PDF
    Mean arterial pressure (MAP) is either measured with an oscillometric cuff and then systolic (SBP) and diastolic (DBP) blood pressures are estimated from an unknown algorithm; or SBP and DBP are measured via auscultation and MAP calculated using measures of systolic pressure (SBP), diastolic pressure (DBP), and a form-factor (FF; equation: [(SBP-DBP)*FF]+DBP). The typical FF used is 0.33 though others (0.4) have been proposed. Recent work indicates that estimation of aortic MAP via a FF leads to inaccurate values and should therefore be interpreted with caution, whether this is the case for local MAP is unknown. While the implications for hypertension (HTN) diagnosis are minimal, the calculation of local MAP is essential to the study of blood pressure regulation and exercise hemodynamics in patient populations (e.g. heart failure). PURPOSE: To compare the calculation of local MAP using catheter waveforms and a FF, against MAP derived from the pressure-time integral (PTI; i.e. average pressure across the cardiac cycle) measured via radial arterial catheterization. METHODS: We analyzed radial arterial catheter waveforms from 39 patients (Age: 71±7 years; BMI: 38.4±6.7; Female: 66%; HTN prevalence: 97%) with heart failure with preserved ejection fraction (HFpEF) at rest and during cycling exercise at 20 Watts. We compared the PTI (from the catheter waveform) with the calculation of MAP from the peak and nadir of the same waveforms (5-beat averages) using the 0.33 and 0.4 FF’s in the FF equation. RESULTS: Compared to the PTI (91±13 mmHg), resting MAP was not significantly different when calculated using the 0.33 FF (91±11 mmHg, P\u3e0.999) but was higher when using the 0.4 FF (96±12 mmHg, PCONCLUSION:While the 0.33 FF provides an accurate assessment of MAP on average during rest and exercise in the radial artery in patients with HFpEF, the limits of agreement are large reflecting a lack of precision in measurement at an individual level. Indirect calculations of MAP via a FF may lead to inaccurate conclusions regarding the mechanisms of blood pressure regulation both at rest and during exercise testing in this population

    Chk2 is a tumour suppressor that regulates apoptosis in both an ataxia telangiectasia mutad (ATM)-dependent and an ATM-independent manner

    Get PDF
    In response to ionizing radiation (IR), the tumor suppressor p53 is stabilized and promotes either cell cycle arrest or apoptosis. Chk2 activated by IR contributes to this stabilization, possibly by direct phosphorylation. Like p53, Chk2 is mutated in patients with Li-Fraumeni syndrome. Since the ataxia telangiectasia mutated (ATM) gene is required for IR-induced activation of Chk2, it has been assumed that ATM and Chk2 act in a linear pathway leading to p53 activation. To clarify the role of Chk2 in tumorigenesis, we generated gene-targeted Chk2-deficient mice. Unlike ATM-/- and p53-/- mice, Chk2-/- mice do not spontaneously develop tumors, although Chk2 does suppress 7,12-dimethylbenzanthracene-induced skin tumors. Tissues from Chk2-/- mice, including those from the thymus, central nervous system, fibroblasts, epidermis, and hair follicles, show significant defects in IR-induced apoptosis or impaired G1/S arrest. Quantitative comparison of the G1/S checkpoint, apoptosis, and expression of p53 proteins in Chk2-/- versus ATM-/- thymocytes suggested that Chk2 can regulate p53-dependent apoptosis in an ATM-independent manner. IR-induced apoptosis was restored in Chk2-/- thymocytes by reintroduction of the wild-type Chk2 gene but not by a Chk2 gene in which the sites phosphorylated by ATM and ataxia telangiectasia and rad3+ related (ATR) were mutated to alanine. ATR may thus selectively contribute to p53-mediated apoptosis. These data indicate that distinct pathways regulate the activation of p53 leading to cell cycle arrest or apoptosis

    The Tumor Suppressor Gene Brca1 Is Required for Embryonic Cellular Proliferation in the Mouse

    Get PDF
    AbstractMutations of the BRCA1 gene in humans are associated with predisposition to breast and ovarian cancers. We show here that Brca1+/− mice are normal and fertile and lack tumors by age eleven months. Homozygous Brca15-6 mutant mice die before day 7.5 of embryogenesis. Mutant embryos are poorly developed, with no evidence of mesoderm formation. The extraembryonic region is abnormal, but aggregation with wild-type tetraploid embryos does not rescue the lethality. In vivo, mutant embryos do not exhibit increased apoptosis but show reduced cell proliferation accompanied by decreased expression of cyclin E and mdm-2, a regulator of p53 activity. The expression of cyclin-dependent kinase inhibitor p21 is dramatically increased in the mutant embryos. Buttressing these in vivo observations is the fact that mutant blastocyst growth is grossly impaired in vitro. Thus, the death of Brca15-6 mutant embryos prior to gastrulation may be due to a failure of the proliferative burst required for the development of the different germ layers

    Impaired Negative Selection of T Cells in Hodgkin's Disease Antigen CD30–Deficient Mice

    Get PDF
    AbstractCD30 is found on Reed–Sternberg cells of Hodgkin's disease and on a variety of non-Hodgkin's lymphoma cells and is up-regulated on cells after Epstein–Barr virus, human T cell leukemia virus, and HIV infections. We report here that the thymus in CD30-deficient mice contains elevated numbers of thymocytes. Activation-induced death of thymocytes after CD3 cross-linking is impaired both in vitro and in vivo. Breeding the CD30 mutation separately into αβTCR- or γδTCR-transgenic mice revealed a gross defect in negative but not positive selection. Thus, like TNF-receptors and Fas/Apo-1, the CD30 receptor is involved in cell death signaling. It is also an important coreceptor that participates in thymic deletion

    The Transcription Factor NF-ATc1 Regulates Lymphocyte Proliferation and Th2 Cytokine Production

    Get PDF
    AbstractNF-ATc1 is a member of a family of genes that encodes the cytoplasmic component of the nuclear factor of activated T cells (NF-AT). In activated T cells, nuclear NF-AT binds to the promoter regions of multiple cytokine genes and induces their transcription. The role of NF-ATc1 was investigated in recombination activating gene-1 (RAG-1)–deficient blastocyst complementation assays using homozygous NF-ATc1−/− mutant ES cell lines. NF-ATc1−/−/RAG-1−/− chimeric mice showed reduced numbers of thymocytes and impaired proliferation of peripheral lymphocytes, but normal production of IL-2. Induction in vitro of Th2 responses, as demonstrated by a decrease in IL-4 and IL-6 production, was impaired in mutant T cells. These data indicate that NF-ATc1 plays roles in the development of T lymphocytes and in the differentiation of the Th2 response
    corecore