122 research outputs found

    Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from −196 °C to 150 °C

    Get PDF
    It has long been believed that tolerance against extreme environments is possible only for ‘lower’ groups, such as archaea, bacteria or tardigrades, and not for more ‘advanced’ species. Here, we demonstrated that the mammalian sperm nucleus also exhibited strong tolerance to cold and hot temperatures. When mouse spermatozoa were freeze-dried (FD), similar to the anhydrobiosis of Tardigrades, all spermatozoa were ostensibly dead after rehydration. However, offspring were obtained from recovered FD sperm nuclei, even after repeated treatment with conditions from liquid nitrogen to room temperature. Conversely, when FD spermatozoa were heated at 95 °C, although the birth rate was decreased with increasing duration of the treatment, offspring were obtained even for FD spermatozoa that had been heat-treated for 2 h. This period was improved up to 6 h when glucose was replaced with trehalose in the freeze-drying medium, and the resistance temperature was extended up to 150 °C for short periods of treatment. Randomly selected offspring grew into healthy adults. Our results suggest that, when considering the sperm nucleus/DNA as the material that is used as a blueprint of life, rather than cell viability, a significant tolerance to extreme temperatures is present even in ‘higher’ species, such as mammals

    X chromosome inactivation in nuclear transfer ES cells

    Get PDF
    金沢大学医薬保健研究域医学系Nuclear transfer ES (ntES) cells are established from cloned blastocysts generated by somatic cell nuclear transfer and are expected to be an important resource for regenerative medicine. However, cloned mammals, generated by similar methods, show various abnormalities, which suggest disordered gene regulation. Random X chromosome inactivation (XCI) has been observed to take place in cloned female mouse embryos, but XCI does not necessarily occur according to Xce strength, a genetic element that determines the likelihood of each X chromosome to be inactivated. This observation suggests incomplete reprogramming of epigenetic marks related to XCI. Here, we investigated XCI in ntES cell lines, which were established using differentiated embryoid bodies that originated from a female mouse ES cell line. We examined Xist RNA localization, histone modifications in the Xist locus, and XCI choice. We did not find substantial differences between the ntES lines and their parental ES line. This suggests that the Xist locus and the epigenetic marks involved in XCI are reprogrammed by nuclear transfer and subsequent ntES cell establishment. In contrast to skewed XCI in cloned mice, our observations indicate that normal XCI choice takes place in ntES cells, which supports the goal of safe therapeutic cloning for clinical use. Copyright © 2008 S. Karger AG

    A Signaling Principle for the Specification of the Germ Cell Lineage in Mice

    Get PDF
    SummarySpecification of the germ cell lineage is vital to development and heredity. In mice, the germ cell fate is induced in pluripotent epiblast cells by signaling molecules, yet the underlying mechanism remains unknown. Here we demonstrate that germ cell fate in the epiblast is a direct consequence of Bmp4 signaling from the extraembryonic ectoderm (ExE), which is antagonized by the anterior visceral endoderm (AVE). Strikingly, Bmp8b from the ExE restricts AVE development, thereby contributing to Bmp4 signaling. Furthermore, Wnt3 in the epiblast ensures its responsiveness to Bmp4. Serum-free, defined cultures revealed that, in response to Bmp4, competent epiblast cells uniformly expressed key transcriptional regulators Blimp1 and Prdm14 and acquired germ-cell properties, including genome-wide epigenetic reprogramming, in an orderly fashion. Notably, the induced cells contributed to both spermatogenesis and fertility of offspring. By identifying a signaling principle in germ cell specification, our study establishes a robust strategy for reconstituting the mammalian germ cell lineage in vitro

    Histone H3 Lysine 27 Methylation Asymmetry on Developmentally-Regulated Promoters Distinguish the First Two Lineages in Mouse Preimplantation Embryos

    Get PDF
    First lineage specification in the mammalian embryo leads to formation of the inner cell mass (ICM) and trophectoderm (TE), which respectively give rise to embryonic and extraembryonic tissues. We show here that this first differentiation event is accompanied by asymmetric distribution of trimethylated histone H3 lysine 27 (H3K27me3) on promoters of signaling and developmentally-regulated genes in the mouse ICM and TE. A genome-wide survey of promoter occupancy by H3K4me3 and H3K27me3 indicates that both compartments harbor promoters enriched in either modification, and promoters co-enriched in trimethylated H3K4 and H3K27 linked to developmental and signaling functions. The majority of H3K4/K27me3 co-enriched promoters are distinct between the two lineages, primarily due to differences in the distribution of H3K27me3. Derivation of embryonic stem cells leads to significant losses and gains of H3K4/K27me3 co-enriched promoters relative to the ICM, with distinct contributions of (de)methylation events on K4 and K27. Our results show histone trimethylation asymmetry on promoters in the first two developmental lineages, and highlight an epigenetic skewing associated with embryonic stem cell derivation

    A role for the elongator complex in zygotic paternal genome demethylation

    Get PDF
    The life cycle of mammals begins when a sperm enters an egg. Immediately after fertilization, both the maternal and paternal genomes undergo dramatic reprogramming to prepare for the transition from germ cell to somatic cell transcription programs 1. One of the molecular events that takes place during this transition is the demethylation of the paternal genome 2,3. Despite extensive efforts, the factors responsible for paternal DNA demethylation have not been identified 4. To search for such factors, we developed a live cell imaging system that allows us to monitor the paternal DNA methylation state in zygotes. Through siRNA-mediated knockdown in zygotes, we identified Elp3/KAT9, a component of the elongator complex 5, to be important for paternal DNA demethylation. We demonstrate that knockdown of Elp3 impairs paternal DNA demethylation as indicated by reporter binding, immunostaining and bisulfite sequencing. Similar results were also obtained when other elongator components, Elp1 and Elp4, were knocked down. Importantly, injection of mRNA encoding the Elp3 radical SAM domain mutant, but not the HAT domain mutant, into MII oocytes before fertilization also impaired paternal DNA demethylation indicating that the SAM radical domain is involved in the demethylation process. Thus, our study not only establishes a critical role for the elongator in zygotic paternal genome demethylation, but also suggests that the demethylation process may be mediated through a reaction that requires an intact radical SAM domain

    DNA Methylation Is Dispensable for the Growth and Survival of the Extraembryonic Lineages

    Get PDF
    SummaryDNA methylation regulates development and many epigenetic processes in mammals [1], and it is required for somatic cell growth and survival [2, 3]. In contrast, embryonic stem (ES) cells can self-renew without DNA methylation [4–6]. It remains unclear whether any lineage-committed cells can survive without DNA-methylation machineries. Unlike in somatic cells, DNA methylation is dispensable for imprinting and X-inactivation in the extraembryonic lineages [7–12]. In ES cells, DNA methylation prevents differentiation into the trophectodermal fate [13]. Here, we created triple-knockout (TKO) mouse embryos deficient for the active DNA methyltransferases Dnmt1, Dnmt3a, and Dnmt3b (TKO) by nuclear transfer (NT), and we examined their development. In chimeric TKO-NT and WT embryos, few TKO cells were found in the embryo proper, but they contributed to extraembryonic tissues. TKO ES cells showed increasing cell death during their differentiation into epiblast lineages, but not during differentiation into extraembryonic lineages. Furthermore, we successfully established trophoblastic stem cells (ntTS cells) from TKO-NT blastocysts. These TKO ntTS cells could self-renew, and they retained the fundamental gene expression patterns of stem cells. Our findings indicated that extraembryonic-lineage cells can survive and proliferate in the absence of DNA methyltransferases and that a cell's response to the stress of epigenomic damage is cell type dependent

    FRAP analysis of chromatin looseness in mouse zygotes that allows full-term development.

    No full text
    Chromatin looseness, which can be analyzed by fluorescence recovery after photobleaching (FRAP) using eGFP-tagged core histone proteins, is an important index of the differentiation potential of blastomere cells and embryonic stem cells. Whether chromatin looseness is a reliable index of the developmental potential of embryos during ontogenesis is not known. As a necessary first step toward answering this question, we investigated whether FRAP-analyzed embryos are capable of normal preimplantation and full-term development. All tested concentrations (50, 100, and 250 ng/μL) of microinjected eGFP-H2B mRNA were sufficient for detecting differences in chromatin looseness between male and female pronuclei. After FRAP analysis, most of the zygotes developed into blastocysts. Importantly, a considerable number of offspring developed from the FRAP analyzed zygotes (32/78; 41.0%) and grew into healthy adults. The offspring of zygotes injected with 250 ng/μL of eGFP-H2B mRNA and bleached using 110 μW laser power for 5 s were not genetically modified. Interestingly, bleaching using a 3-fold stronger laser intensity for a 6-fold longer time did not cause toxicity during preimplantation development, indicating that bleaching did not critically affect preimplantation development. Finally, we confirmed that similar results were obtained using two different types of confocal laser-scanning microscopes. This FRAP protocol would be useful for investigating the association between chromatin looseness and development
    corecore