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Abstract

The life cycle of mammals begins when a sperm enters an egg. Immediately after fertilization, 

both the maternal and paternal genomes undergo dramatic reprogramming to prepare for the 

transition from germ cell to somatic cell transcription programs 1. One of the molecular events that 

takes place during this transition is the demethylation of the paternal genome 2,3. Despite 

extensive efforts, the factors responsible for paternal DNA demethylation have not been identified 
4. To search for such factors, we developed a live cell imaging system that allows us to monitor 

the paternal DNA methylation state in zygotes. Through siRNA-mediated knockdown in zygotes, 

we identified Elp3/KAT9, a component of the elongator complex 5, to be important for paternal 

DNA demethylation. We demonstrate that knockdown of Elp3 impairs paternal DNA 

demethylation as indicated by reporter binding, immunostaining and bisulfite sequencing. Similar 

results were also obtained when other elongator components, Elp1 and Elp4, were knocked down. 

Importantly, injection of mRNA encoding the Elp3 radical SAM domain mutant, but not the HAT 

domain mutant, into MII oocytes before fertilization also impaired paternal DNA demethylation 

indicating that the SAM radical domain is involved in the demethylation process. Thus, our study 

not only establishes a critical role for the elongator in zygotic paternal genome demethylation, but 

also suggests that the demethylation process may be mediated through a reaction that requires an 

intact radical SAM domain.

Global removal of the methyl group from 5-methyl-CpG (5mC) of DNA has been observed 

in at least two stages of embryogenesis. One occurs in zygotes when the paternal genome is 
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preferentially demethylated 2,3. However, imprinted genes are resistant to this wave of DNA 

demethylation 6. Instead, this group of genes is actively demethylated in primordial germ 

cells (PGCs) from E10.5 to E12.5 which results in the establishment of gender-specific 

methylation patterns 7. Given the importance of active DNA demethylation in 

embryogenesis, reprogramming, cloning, and stem cell biology, the identification of the 

putative demethylase has been one of the major focuses in the field 4.

The first molecule claimed to posses DNA demethylase activity is the methyl-CpG binding 

protein Mbd2 8. However, Mbd2 is not required for paternal genome demethylation as 

normal demethylation is still observed in Mbd2 deficient zygotes 9. Several recent studies in 

plants 10,11, zebrafish 12, and mammalian cells 13 have suggested that active DNA 

demethylation can occur through various DNA repair mechanisms. However, it is not 

known whether any of these proteins affect paternal genome demethylation.

Both Gadd45a and Gadd45b have been implicated in DNA demethylation in somatic cells 
13,14, but the role of Gadd45a in DNA demethylation has been challenged by some recent 

studies 15,16. To determine whether Gadd45 proteins play a role in paternal DNA 

demethylation in zygotes, we performed RT-qPCR and found that Gadd45b is the most 

highly expressed gene among the Gadd45 family members in zygotes (Fig. S1a). Because 

Gadd45b has been shown to affect DNA demethylation in mature non-proliferating neurons 
14, we examined whether loss of Gadd45b function affects zygotic paternal DNA 

demethylation. Immunostaining with the 5mC antibody indicates that paternal DNA 

demethylation is not affected by Gadd45b knockout suggesting that Gadd45b is not required 

for paternal DNA demethylation (Fig. S1b).

To facilitate the identification of factors involved in paternal DNA demethylation, we 

attempted to develop two molecular probes (Fig. S2a, b). The MBD domain of Mbd1 and 

the CxxC domain of Mll1 have high affinity towards methyl-CpG and non-methyl-CpG, 

respectively 17,18. Expectedly, EGFP-MBD exhibited a nuclear dotted pattern, while CxxC-

EGFP exhibited diffuse nuclear staining in wild-type MEFs (Fig. S2c, d). In contrast, almost 

100% of Dnmt1 null MEF cells that lack CpG methylation exhibited punctate nuclear 

localization of CxxC-EGFP. Unexpectedly, the nuclear dotted pattern of EGFP-MBD was 

still maintained in ~60% of the DKO cells (Fig. S2c, d). This result indicates that when 

compared to EGFP-MBD, CxxC-EGFP is the better probe whose subcellular localization 

pattern can reflect the DNA methylation state. We further confirmed the utility of the CxxC-

EGFP reporter by demonstrating that 5-Aza-dC-mediated DNA demethylation resulted in a 

clear increase in the number and intensity of GFP bright dots in NIH 3T3 cells (Fig. S2e).

We next tested whether the CxxC-EGFP probe can accurately “report” paternal genome 

demethylation. Since injected plasmid DNA is transcriptionally inactive in 1-cell zygotes, 

we adapted an mRNA injection technique that allows for visualization of molecular events 

in the mammalian zygote as early as 3 hours after introduction 19. We generated poly(A) 

mRNAs for the CxxC-EGFP as well as H2B-mRFP1 (monomeric red fluorescent protein 1) 

by in vitro transcription 19 (Fig. S2b). Using the procedure outlined in Fig. S3a, the mRNAs 

were co-injected into the zygotes immediately after in vitro fertilization (IVF). Time-lapse 

imaging of the injected zygotes indicate that CxxC-EGFP is visible at the PN2 stage and 
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accumulates throughout the PN3-4 and PN5 stages in the paternal pronucleus (Fig. S3b). 

The dynamics of the paternal PN CxxC-EGFP accumulation mimic paternal DNA 

demethylation dynamics reported previously 2,3. Based on this result, we conclude that 

paternal genome demethylation can be monitored by injection of CxxC-EGFP mRNA in 

zygotes.

We next asked whether siRNA-mediated depletion of candidate mRNAs in the oocytes 

could affect paternal DNA demethylation in zygotes. We first determined the optimal 

siRNA concentration and the time needed for injected siRNA to become effective using 

siRNA against Lamin A/C. The tests established that effective knockdown required a 

minimum dose of 2 μM and incubation time of 8 hrs prior to intracytoplasmic sperm 

injection (ICSI). Based on the results from these tests, we established a modified 

experimental procedure (Fig. 1a). To facilitate early stage PN identification (PN0-2), we 

also replaced H2B-mRFP1 with H3.3-mRFP1 as H3.3 has been shown to be preferentially 

deposited in the paternal PN immediately following fertilization 20. This modified 

experimental scheme allows us to monitor H3.3 deposition and DNA demethylation 

simultaneously with time-lapse imaging. A representative snap shot of the various PN stages 

with the injection of a scrambled siRNA control is presented in Fig. 1b. This time-lapse 

imaging system coupled with siRNA knockdown, allowed us to test a dozen candidate genes 

selected based on several criteria that include: 1) their expression in zygotes; 2) the domain/

structure motifs they contain; and 3) their potential in catalyzing DNA demethylation. Using 

these criteria, we designed siRNAs targeting a dozen candidate genes. We achieved a 

knockdown efficiency of at least 80% for six of the candidate genes that include Cyp11a1, 

Smc6-like, Brm, Alkbh5, NfuI, and Elp3 (Fig. S4a). We also attempted to knockdown the 

recently identified 5mC hydroxylase Tet1 21 but failed to achieve high efficiency. With the 

exception of Elp3 knockdown (Fig. 1c), none of the other knockdowns altered the 

preferential distribution of the reporter to the paternal pronucleus (Fig. S4b). To verify this 

preliminary observation, we performed immunostaining using the anti-5mC antibody. 

Results shown in Fig. 2a clearly demonstrate that knockdown of Elp3 prevent paternal DNA 

demethylation. Furthermore, a second siRNA targeting a different region of Elp3 also 

resulted in a similar result (Fig. 2a).

Although preferential demethylation of the paternal DNA in zygotes is a general 

phenomenon, the extent of demethylation of individual zygotes is variable (Fig. S5). 

Therefore, we quantified the effect of Elp3 knockdown on paternal DNA demethylation by 

analyzing a large number of zygotes. After determination of the highest 5mC intensity of the 

Z-section for both male and female pronucleus (Fig. S6a), a ratio of paternal over maternal 

5mC intensity was determined for each zygote (Fig. S6b). Analysis of 80 PN4-5 stage 

zygotes with control injection results in an average ratio of 0.501. However, this ratio is 

significantly increased (average 0.742, p=8.14E-07) with injection of siRNAs that target 

Elp3 (Fig. 2b). These results indicate that Elp3 knockdown significantly impairs paternal 

DNA demethylation as judged by 5mC Ab staining.

To provide direct evidence that Elp3 knockdown affects paternal DNA demethylation, we 

evaluated DNA methylation levels by bisulfite sequencing. Previous studies indicated that 

the transposable elements Line1 and Etn (early retrotransposons) are actively demethylated 
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in zygotes 22,23. We therefore asked whether knockdown of Elp3 would impair their 

demethylation. To this end, we injected siRNAs that target Elp3 prior to ICSI and isolated 

paternal pronuclei at the PN3-4 stages when DNA demethylation is at the beginning or is 

still occurring. We note that this is the latest time that we can still isolate the paternal 

pronuclei without co-isolating the maternal pronuclei as the two pronuclei become too close 

at the PN5 stage. Despite the fact that demethylation is far from completion at the PN3-4 

stage, the effect of Elp3 knockdown on Line1 and Etn demethylation is still obvious (Fig. 

3c). However, the methylation state of the imprinted H19 DMR or an unmethylated control 

Epha7 is not affected by Elp3 knockdown (Fig. S7) indicating the observed effect on Line1 

and Etn is specific.

Elp3 is a component of the elongator complex that was initially identified based on its 

association with the RNA polymerase II holoenzyme involved in transcriptional elongation. 

Subsequent studies have revealed that the elongator complex has diverse functions that 

include cytoplasmic kinase signalling, exocytosis, and tRNA modification 5. The yeast 

elongator complex is composed of six subunits, Elp1-6, which includes the histone 

acetyltransferase (HAT) Elp3 24. The human elongator purified from HeLa is also composed 

of six subunits although the identities of Elp5 and Elp6 are unknown 25. To determine 

whether knockdown of other elongator subunits in oocytes also prevents paternal DNA from 

demethylation, we performed knockdown on two additional elongator subunits, Elp1 and 

Elp4. Results shown in Fig. 3 demonstrate that knockdown of these two subunits also 

significantly affects paternal genome demethylation. Collectively, these results suggest that 

paternal DNA demethylation in zygotes requires the elongator complex.

In addition to a HAT domain, Elp3 also contains a domain that shares significant sequence 

homology with the radical SAM domain present in the radical SAM superfamily (Fig. 4a). 

Members of this superfamily contain an iron-sulfur (Fe-S) cluster and use S-

adenosylmethionine (SAM) to catalyze a variety of radical reactions 26. Interestingly, a 

recent study confirmed the presence of this Fe4S4 cluster in the bacteria 

Methanocaldococcus jannaschii Elp3 protein 27. To determine whether any of the two 

conserved domains of the mouse Elp3 is required for paternal DNA demethylation, we used 

a dominant negative approach and generated mRNAs that harbor mutations in the cysteine-

rich motif and the HAT domain respectively (Fig. 4a). Injection of the cysteine mutant 

mRNA, but not the wild-type or HAT mutant mRNA, significantly impaired paternal DNA 

demethylation (Fig. 4b, c), indicating that the cysteine-rich motif, but not the HAT domain, 

is important for paternal DNA demethylation.

Using a live cell imaging reporter system coupled with siRNA knockdown, we uncovered a 

critical function of the elongator complex in paternal DNA demethylation. Several lines of 

evidence support our conclusion. First, three independent assays (reporter localization, 5mC 

staining, bisulfite sequencing) indicate that knockdown of Elp3 impairs paternal DNA 

demethylation (Figs. 1, 2). Second, knockdown of additional components of the elongator 

complex Elp1 and Elp4 also impaired paternal DNA demethylation (Fig. 3). Third, a 

dominant negative approach identified the radical SAM domain, but not the HAT domain, of 

Elp3 to be critical for the demethylation to occur (Fig. 4). Consistent with the involvement 

of the elongator complex in zygote demethylation, mRNA levels of Elp1-4 are up-regulated 
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3-9 fold in the PN1-2 stages prior to the start of paternal DNA demethylation at PN3 (Fig. 

S7). Considering the fact that it takes ~3 hrs for injected mRNA to be expressed, the 

upregulation of the Elp mRNA levels at PN1-2 stages is consistent with demethylation of 

the paternal DNA at PN3-5 stages. Although the exact molecular mechanism by which the 

elongator complex participates in the demethylation process awaits to be determined, the 

demonstration for the first time that a specific protein complex is involved in paternal 

genome demethylation in zygotes has set the stage for further studies. The fact that the 

radical SAM domain is required for demethylation to occur points to a potential mechanism 

that involves the generation of a powerful oxidizing agent, 5′-deoxyadenosyl radical, from 

SAM. 5′-deoxyadenosyl radical could then extract a hydrogen atom from the methyl group 

of 5mC to generate 5mC radical for subsequent reactions. Although this potential 

mechanism is attractive, currently we do not have evidence indicating that Elp3 directly acts 

upon DNA as a DNA demethylase. We note that reconstitution of the enzymatic activity 

may not be trivial as the maternal genome in the same zygote is not subject to demethylation 

indicating that certain features of the paternal genome might be required for the 

demethylation reaction to occur. Regardless of how elongator participates in the 

demethylation process, our studies not only uncover a novel function for the elongator 

complex, but also set the stage for understanding the functional significance of paternal 

genome demethylation.

METHOD SUMMARY

Oocyte/zygote preparation, 5mC staining, and time-lapse imaging

MII oocytes, collected from female BDF1 mice treated with PMSG (Harbor-UCLA) and 

hCG (Sigma Aldrich), were cultured in M16 medium (EmbryoMax, Millipore) or CZB 

medium at 37°C with 5% CO2 before being used in experiments. For 5mC staining, zygotes 

were fixed with 4% paraformaldehyde and then permeabilized with 0.4% TritonX-100 for 

30 min at room temperature. Cells were then washed with PBS containing 0.05% Tween20 

(PBST), treated with 4N HCl for 30 min, and then neutralized with 0.1M Tris-HCl (pH 8.5) 

for 10 min before being washed with PBST containing 0.5 M NaCl. After blocking with 1% 

BSA in PBST, cells were incubated with anti-5mC antibody (Eurogentic) for 0.5-1 hr at 

37°C, and the signal is detected by FITC-conjugated donkey anti-mouse IgG (Jackson 

Immmunoresearch). Fluorescent images and time-lapse imaging were taken using a confocal 

microscope with a spinning disk (CSU-10, Yokogawa). Images were acquired as multiple 

2μm-Z-axis intervals, and stacked images were reconstituted using Axiovision (Zeiss) or 

MetaMorph (Universal Imaging Co).

mRNA and siRNA injection, RT-qPCR, and bisulfite sequencing

About 3-5 pl of siRNAs (2μM) purchased from Ambion (Table S1) were co-injected with 

H3.3-mRFP1 (25 μg/ml) and CxxC-EGFP mRNAs (25 μg/ml). After 8 hrs of cultivation, 

cells were subjected to ICSI. To determine knockdown efficiency, RNA isolated from 10-20 

zygotes at PN4-5 stage was used for RT-qPCR using SuperScript III cDNA synthesis kit and 

SYBR GreenER (Invitrogen). For bisulfite sequencing, Elp3 or control siRNA was co-

injected with H3.3-mRFP1 mRNA to MII oocytes followed by ICSI. Male pronulei were 

harvested at PN3-4 stages. Forty-three and 47 male pronuclei from control or siElp3-injected 
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zygotes were used for bisulfite conversion using EZ DNA Methylation-Direct Kit (Zymo 

Research), respectively.

FULL METHODS

DNA constructs

cDNA that encodes the CxxC domain (aa. 1144-1250) of mouse Mll-1 (NCBI# NP_005924) 

was cloned by RT-PCR. cDNA for H3.3 was provided by Dr. Nakatani 28. These cDNAs 

were subcloned into a pcDNA3.1-poly(A)83 vector with a C-terminal EGFP or mRFP1. 

pcDNA3.1-EGFP-MBD-poly(A)83 and pcDNA3.1-H2B-mRFP1-poly(A)83 were 

previously described 19. These plasmids were used for in vitro transcription using the 

RiboMAX Large Scale RNA production System T7 (Promega). Synthesized mRNAs were 

purified with Illustra MicroSpin G-25 columns (GE Healthcare) before being used for 

injection. The mouse Elp3 cDNA was amplified by RT-PCR and was subcloned into a 

pCDNA3.1-poly(A)83 vector with a Flag tag at the N-terminus. Both the cysteine and the 

HAT mutants of Elp3 were generated by PCR-based mutagenesis and confirmed by 

sequencing. The primers used for generation of these mutants were as follows: Cys-F) 5′ 

ACAGGGAATATATCTATATACTCCCCCGGAGGACCTG-3′, Cys-R) 5′-

CAGGTCCTCCGGGGGAGTATATAGATATATTCCCTGT-3′, HAT-F) 5′-

AATTTCAGCATCAGTTCGCCTTCATGCTGCTGATGG-3′, HAT-R) 5′-

CCATCAGCAGCATGAAGGCGAACTGATGCTGAAATT-3′. The underlined 

nucleotides are substituted in the mutants.

Mice and oocyte/zygote preparation

All animal experiments were performed according to procedures approved by the 

Institutional Animal Care and Use Committee (IACUC protocol# 07-006) and the Animal 

Experiment Handbook at the Kobe Center for Developmental Biology (RIKEN). Four to 

twelve week old BDF1 mice (C57BL6 × DBA2, Charles River or Japan SLC) were used for 

all the experiments. MII oocytes, collected from female mice treated with PMSG (Harbor-

UCLA) and hCG (Sigma Aldrich), were cultured in M16 medium (EmbryoMax, Millipore) 

or CZB medium at 37°C with 5% CO2 before being used in experiments. Gadd45b-deficient 

zygotes were obtained by mating of Gadd45b knockout mice pairs 14.

5mC staining and time-lapse imaging

Zygotes were fixed with 4% paraformaldehyde for at least 1.5 hrs at 4°C. After washing 

with PBS, the zygotes were permeabilized with 0.4% TritonX-100 for 30 min at room 

temperature. Cells were then washed with PBS containing 0.05% Tween20 (PBST) and 

treated with 4N HCl for 30 min at room temperature before being neutralized with 0.1M 

Tris-HCl (pH 8.5) for 10 min, and then washed with PBST containing 0.5 M NaCl. In the 

following procedure, all solutions and buffers contain 0.5 M NaCl. After blocking with 1% 

BSA in PBST, cells were incubated with anti-5mC antibody (1:100 dilution, Eurogentic) for 

0.5-1 hr at 37°C, and the positive signal was detected by FITC-conjugated donkey anti-

mouse IgG (Jackson Immmunoresearch). Fluorescent images were taken using a confocal 

microscope with a spinning disk (CSU-10, Yokogawa). The same confocal microscope 

system, combined with an on-stage incubation chamber, was used for time-lapse imaging. 
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For both live and fixed zygotes, images were acquired as multiple 2μm-Z-axis intervals, and 

stacked images were reconstituted using Axiovision (Zeiss) or MetaMorph (Universal 

Imaging Co). The intensity of 5mC in each pronucleus was calculated by MetaMorph as 

shown in Fig. S6.

mRNA and siRNA injection, RT-qPCR, and bisulfite sequencing

About 3-5 pl of siRNAs (2μM) purchased from Ambion (Table S1) were co-injected with 

H3.3-mRFP1 (25 μg/ml) and CxxC-EGFP mRNAs (25 μg/ml) simultaneously. After 8 hrs of 

cultivation, cells were subjected to ICSI (Fig. 2a). For determination of knockdown 

efficiency, RNA isolated from 10-20 zygotes at PN4-5 stage were used for reverse 

transcription using SuperScript III Cell Direct cDNA synthesis kit (Invitrogen) followed by 

quantitative PCR (qPCR) using SYBR GreenER (Invitrogen). To determine the expression 

dynamics of Elp1-4 during pronuclear stages (Fig. S6), MII oocytes were subjected to in 

vitro fertilization. Groups of zygotes (100-120) were collected at 4 hours after insemination 

(PN1-2), and then every two hours (PN3, 4, 5, respectively) followed by acidic Tyrode’s 

treatment to remove cumulus cells. The extracted RNAs were subject to reverse 

transcription. Results were normalized with 18S rRNA as a standard. Primer sequences for 

qPCR are listed in Table S2.

For bisulfite sequencing, either Elp3 siRNA or control siRNA was co-injected with H3.3-

mRFP1 mRNA to MII oocytes followed by ICSI after 6-8 hrs of siRNA/mRNA injection. 

Male pronulei, which were distinguished from female pronuclei based on their size, distance 

from polar bodies, and more intense H3.3-mRFP1 fluorescence, were harvested from 

zygotes of PN3-4 stages by breaking the zona and cytoplasm using Piezo drive (Prime Tech) 

and aspirating using a micromanipulator. Forty-three male pronuclei from control siRNA-

injected zygotes and 47 male pronuclei from siElp3-injected zygotes were collected and 

subjected to bisulfite conversion using EZ DNA Methylation-Direct Kit (Zymo Research). 

Nested PCR was performed using Platinum Taq DNA polymerase (Invitrogen) or ExTaq HS 

(TaKaRa). The sequences of the PCR primers and PCR conditions are listed in Table S3 

(ref29,30).

Cell culture and transfection

Immortalized p53 knockout (KO) and p53/Dnmt1 double knockout (DKO) mouse 

embryonic fibroblasts (MEFs) were previously described (Jackson-Grusby et al., 2001). The 

KO MEFs, DKO MEFs, and NIH3T3 cells were maintained in DMEM supplemented with 

10% FBS. pcDNA3-EGFP-pA83 plasmids containing that MBD domain and CxxC motif 

were transfected using Fugene6 (Roche). NIH3T3 cells that stably express CxxC-EGFP 

were selected under 1 mg/ml G418. 5-Aza-2′deoxycytidine (Sigma Aldrich) was applied at 

the concentration of 5 μM for 72 hours.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Knockdown of Elp3 prevents preferential incorporation of the CxxC-EGFP reporter 
into the paternal pronucleus
(a) Scheme of the experimental procedure. (b, c) Time-lapse imaging of CxxC-EGFP 

(green; left column) and H3.3-mRFP1 (red; middle column) at various pronucleus stages of 

zygotic development in the absence (b) or presence (c) of siRNA that targets Elp3. ♂: male 

pronucleus, ♀: female pronucleus, PB: polar body. Bar = 25 μm.
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Figure 2. Knockdown of Elp3 impairs DNA demethylation in the paternal pronucleus
(a) siRNA-mediated knockdown of Elp3 resulted in increased 5mC staining (green) in the 

PN5 paternal pronucleus. H3.3-mRFP1 (red) serves as a nuclear marker. H3.3-mRFP1 

signal is more intense in male pronuclei than in female pronulcei due to preferential 

incoporation of H3.3 to the paternal genome. ♂: male pronucleus, ♀: female pronucleus, 

PB: polar body. Bar = 25 μm. (b) Quantification of the ratio (male/female) of 5mC intensity 

in Elp3 knockdown and control groups. Each dot represents a zygote. Red bars represent the 

average ratio of each group. The statistics of the injections are presented in the table. (c) 

Bisulfite sequencing of Line1-5′ and ETn indicates that knockdown of Elp3 impairs paternal 

DNA demethylation. Open circles and closed circles represent unmethylated and methylated 

CpG respectively. Each line represents an individual clone. 10 CpGs and 15 CpGs were 

analyzed for Line1-5′ and ETn respectively.
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Figure 3. Knockdown of the elongator components Elp1 and Elp4 also impairs paternal DNA 
demethylation in zygotes
(a) siRNA-mediated knockdown of Elp1 and Elp4 resulted in increased 5mC staining 

(green) in the PN5 paternal pronucleus. H3.3-mRFP1 (red) serves as a nuclear marker. ♂: 

male pronucleus, ♀: female pronucleus, PB: polar body. Bar = 25 μm. (b) Quantification of 

the ratio (male/female) of 5mC intensity in Elp1, Elp4, Elp3 knockdown and control groups. 

Each dot represents a zygote. Red bars represent the average ratio of each group. The 

statistics of the injections are presented in the table.
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Figure 4. Mutation of the cysteine-rich radical SAM domain of Elp3 impairs paternal DNA 
demethylation
Schematic representation of wild-type and mutant mElp3. Conserved domain (CD) of Elp3 

protein sequences from NCBI are aligned with Elp3 sequences from budding yeast and 

mouse. Conserved amino acid residues are color coded in red. (b) Overexpression of the Cys 

mutant, but not the HAT mutant or wild-type, blocked paternal DNA demethylation. 

Representative images from PN5 stage were shown. ♂: male pronucleus, ♀: female 

pronucleus, PB: polar body. Bar = 25 μm. (c) Quantification of the ratio (male/female) of 

5mC intensity in control and Elp3 (wild-type, Cyc mutant, or HAT mutant) mRNA injected 

groups. Each dot represents a zygote. Red bars represent the average ratio of each group. 

The statistics of the injections are presented in the table.
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