37 research outputs found

    IFMIF, the European–Japanese efforts under the Broader Approach agreement towards a Li(d,xn) neutron source: Current status and future options

    Get PDF
    The necessity of a neutron source for fusion materials research was identified already in the 70s. Though neutrons induced degradation present similarities on a mechanistic approach, thresholds energies for crucial transmutations are typically above fission neutrons spectrum. The generation of He via 56Fe (n,α) 53Cr in future fusion reactors with around 12 appm/dpa will lead to swelling and structural materials embrittlement. Existing neutron sources, namely fission reactors or spallation sources lead to different degradation, attempts for extrapolation are unsuccessful given the absence of experimental observations in the operational ranges of a fusion reactor. Neutrons with a broad peak at 14 MeV can be generated with Li(d,xn) reactions; the technological efforts that started with FMIT in the early 80s have finally matured with the success of IFMIF/EVEDA under the Broader Approach Agreement. The status today of five technological challenges, perceived in the past as most critical, are addressed. These are: 1. the feasibility of IFMIF accelerators, 2. the long term stability of lithium flow at IFMIF nominal conditions, 3. the potential instabilities in the lithium screen induced by the 2 × 5 MW impacting deuteron beam, 4. the uniformity of temperature in the specimens during irradiation, and 5. the validity of data provided with small specimens. Other ideas for fusion material testing have been considered, but they possibly are either not technologically feasible if fixed targets are considered or would require the results of a Li(d,xn) facility to be reliably designed. In addition, today we know beyond reasonable doubt that the cost of IFMIF, consistently estimated throughout decades, is marginal compared with the cost of a fusion reactor. The less ambitious DEMO reactor performance being considered correlates with a lower need of fusion neutrons flux; thus IFMIF with its two accelerators is possibly not needed since with only one accelerator as the European DONES or the Japanese A-FNS propose, the present needs > 10 dpa/fpy would be fulfilled. World fusion roadmaps stipulate a fusion relevant neutron source by the middle of next decade, the success of IFMIF/EVEDA phase is materializing this four decades old dream

    The design and thermo-structural analysis of target assembly for high intensity neutron source

    No full text
    The engineering design of an integrated target assembly of IFMIF lithium target was performed in IFMIF/EVEDA project for a high intensity neutron source. In the evaluation of the design, a thermos-structural analysis of was evaluated by ABAQUS code, and the modeling region was a part of the target assembly which was from the inlet nozzle to the outlet pipe. The material of the target assembly including the back plate was F82H steel. In the thermal-structural analysis, the normal operations and start/stop or abnormal operations were evaluated at 250 or 300°C operation of Li flow in inlet pipe. The result showed that the temperature of the target assembly was evaluated to be still lower than the Li boiling point of 344°C under a vacuum pressure of 10−3 Pa. In a temperature constant operation, the calculated stresses and displacements were small enough for thermal soundness of the target assembly in steady states. In a transient cooling process from 300 °C to 20°C through 250°C, the maximum Mises stress was found to be 372 MPa, which was lower than the yield stress at 300°C

    Cavitation inception upstream of liquid lithium target for intense fusion neutron source

    No full text
    A liquid Li free-surface stream flowing at 15 m/s under a high vacuum of 10−3Pa is to serve as a beam target (Li target) for an intense neutron source such as the planned International Fusion Materials Irradiation Facility (IFMIF). This study examines cavitation-like acoustic noise occurring upstream of the Li target. This noise is detected using an acoustic emission sensor that is installed at a Li target assembly in which the Li target was produced. A time-frequency analysis by continuous wavelet transform (CWT)was performed to characterize the acoustic noise, which determined the cause of the acoustic signal was cavitation. And the occurrence of cavitation was discussed by using Bernoulli’s equation and compared with the experimental observations. As a consequence, we revealed a criterion of inception of cavitation and a proper startup pressure of the Li target, which will be a design basis for the future IFMIF Li target facility
    corecore