4,116 research outputs found

    Numerical study of the lattice vacancy effects on the single-channel electron transport of graphite ribbons

    Full text link
    Lattice vacancy effects on electrical conductance of nanographite ribbon are investigated by means of the Landauer approach using a tight binding model. In the low-energy regime ribbons with zigzag boundary provide a single conducting channel whose origin is connected with the presence of edge states. It is found that the chemical potential dependence of conductance strongly depends on the difference (Δ\Delta) of the number of removed A and B sublattice sites. The large lattice vacancy with Δ0\Delta\neq 0 shows 2Δ2\Delta zero-conductance dips in the single-channel region, however, the large lattice vacancy with Δ=0\Delta=0 has no dip structure in this region. The connection between this conductance rule and the Longuet-Higgins conjecture is also discussed

    The nirSTBM region coding for cytochrome cd1-dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins

    Get PDF
    AbstractGenes for respiratory nitrite reduction (denitrification) of Pseudomonas stutzeri are clustered within 7 kbp. A 4.6-kbp Hind III-Kpn I fragment carrying nirS, the structural gene for cytochrome cd1, was sequenced. An open reading frame immediately downstream of nirScodes for a 22.8-kDa protein with four heme c-binding motifs. Mutagenesis of this gene causes an apparent defect in electron donation to cytochrome cd1. Following this ORF are the structural genes for cytochrome c552, cytochrome c551, and ORF5 that codes for a 11.9-kDa monoheme protein. All cytochromes have a signal sequence for protein export

    Avoided crossings in mesoscopic systems: electron propagation on a non-uniform magnetic cylinder

    Full text link
    We consider an electron constrained to move on a surface with revolution symmetry in the presence of a constant magnetic field BB parallel to the surface axis. Depending on BB and the surface geometry the transverse part of the spectrum typically exhibits many crossings which change to avoided crossings if a weak symmetry breaking interaction is introduced. We study the effect of such perturbations on the quantum propagation. This problem admits a natural reformulation to which tools from molecular dynamics can be applied. In turn, this leads to the study of a perturbation theory for the time dependent Born-Oppenheimer approximation

    Orbital Ordering Structures in (Nd,Pr)0.5Sr0.5MnO3 Manganite Thin Films on Perovskite (011) Substrates

    Full text link
    Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films' resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.Comment: 19pages, 11 figure

    Superconductivity and spin-glass like behavior in system with Pd sheet sandwiched between graphene sheets

    Full text link
    Pd-metal graphite (Pd-MG) has a layered structure, where each Pd sheet is sandwiched between adjacent graphene sheets. DC magnetization and AC magnetic susceptibility of Pd-MG have been measured using a SQUID magnetometer. Pd-MG undergoes a superconducting transition at TcT_{c} (=3.63±0.04= 3.63 \pm 0.04 K). The superconductivity occurs in Pd sheets. The relaxation of MZFCM_{ZFC} (aging), which is common to spin glass systems, is also observed below TcT_{c}. The relaxation rate S(t)S(t) shows a peak at a characteristic time tcrt_{cr}, which is longer than a wait time twt_{w}. The irreversibility between χZFC\chi_{ZFC} and χFC\chi_{FC} occurs well above TcT_{c}. The susceptibility χFC\chi_{FC} obeys a Curie-Weiss behavior with a negative Curie-Weiss temperature (13.1Θ5.4-13.1 \leq \Theta \leq -5.4 K). The growth of antiferromagnetic order is limited by the disordered nature of nanographites, forming spin glass-like behavior at low temperatures in graphene sheets.Comment: 21 pages, 15 figures; submitted to J. Phys.: Condensed Matte

    First application of the Trojan Horse Method with a Radioactive Ion Beam: study of the 18^{18}F(p,αp,{\alpha})15^{15}O}} reaction at astrophysical energies

    Full text link
    Measurement of nuclear cross sections at astrophysical energies involving unstable species is one of the most challenging tasks in experimental nuclear physics. The use of indirect methods is often unavoidable in this scenario. In this paper the Trojan Horse Method is applied for the first time to a radioactive ion beam induced reaction studying the 18^{18}F(p,αp,{\alpha})15^{15}O process at low energies relevant to astrophysics via the three body reaction 2^{2}H(18^{18}F,α15{\alpha}^{15}O)n. The knowledge of the 18^{18}F(p,αp, {\alpha})15^{15}O reaction rate is crucial to understand the nova explosion phenomena. The cross section of this reaction is characterized by the presence of several resonances in 19^{19}Ne and possibly interference effects among them. The results reported in Literature are not satisfactory and new investigations of the 18^{18}F(p,αp,{\alpha})15^{15}O reaction cross section will be useful. In the present work the spin-parity assignments of relevant levels have been discussed and the astrophysical S-factor has been extracted considering also interference effectsComment: 7 pages, 4 figure

    Low-frequency modes in the Raman spectrum of sp-sp2 nanostructured carbon

    Full text link
    A novel form of amorphous carbon with sp-sp2 hybridization has been recently produced by supersonic cluster beam deposition showing the presence in the film of both polyynic and cumulenic species [L. Ravagnan et al. Phys. Rev. Lett. 98, 216103 (2007)]. Here we present a in situ Raman characterization of the low frequency vibrational region (400-800 cm-1) of sp-sp2 films at different temperatures. We report the presence of two peaks at 450 cm-1 and 720 cm-1. The lower frequency peak shows an evolution with the variation of the sp content and it can be attributed, with the support of density functional theory (DFT) simulations, to bending modes of sp linear structures. The peak at 720 cm-1 does not vary with the sp content and it can be attributed to a feature in the vibrational density of states activated by the disorder of the sp2 phase.Comment: 15 pages, 5 figures, 1 tabl

    Phonons in random alloys: the itinerant coherent-potential approximation

    Full text link
    We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni_{55} Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation(CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
    corecore