5,541 research outputs found

    Berry's Phase for Standing Wave Near Graphene Edge

    Full text link
    Standing waves near the zigzag and armchair edges, and their Berry's phases are investigated. It is suggested that the Berry's phase for the standing wave near the zigzag edge is trivial, while that near the armchair edge is non-trivial. A non-trivial Berry's phase implies the presence of a singularity in parameter space. We have confirmed that the Dirac singularity is absent (present) in the parameter space for the standing wave near the zigzag (armchair) edge. The absence of the Dirac singularity has a direct consequence in the local density of states near the zigzag edge. The transport properties of graphene nanoribbons observed by recent numerical simulations and experiments are discussed from the point of view of the Berry's phases for the standing waves.Comment: 6 pages, 4 figure

    Temperature Dependence of the Superfluid Density in a Noncentrosymmetric Superconductor

    Get PDF
    For a noncentrosymmetric superconductor such as CePt3Si, we consider a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. We calculate the superfluid density tensor in the clean limit on the basis of the quasiclassical theory of superconductivity. We demonstrate that such a pairing model accounts for an experimentally observed feature of the temperature dependence of the London penetration depth in CePt3Si, i.e., line-node-gap behavior at low temperatures.Comment: 10 page

    Electronic States of Graphene Nanoribbons

    Full text link
    We study the electronic states of narrow graphene ribbons (``nanoribbons'') with zigzag and armchair edges. The finite width of these systems breaks the spectrum into an infinite set of bands, which we demonstrate can be quantitatively understood using the Dirac equation with appropriate boundary conditions. For the zigzag nanoribbon we demonstrate that the boundary condition allows a particle- and a hole-like band with evanescent wavefunctions confined to the surfaces, which continuously turn into the well-known zero energy surface states as the width gets large. For armchair edges, we show that the boundary condition leads to admixing of valley states, and the band structure is metallic when the width of the sample in lattice constant units is divisible by 3, and insulating otherwise. A comparison of the wavefunctions and energies from tight-binding calculations and solutions of the Dirac equations yields quantitative agreement for all but the narrowest ribbons.Comment: 5 pages, 6 figure

    Numerical study of the lattice vacancy effects on the single-channel electron transport of graphite ribbons

    Full text link
    Lattice vacancy effects on electrical conductance of nanographite ribbon are investigated by means of the Landauer approach using a tight binding model. In the low-energy regime ribbons with zigzag boundary provide a single conducting channel whose origin is connected with the presence of edge states. It is found that the chemical potential dependence of conductance strongly depends on the difference (Δ\Delta) of the number of removed A and B sublattice sites. The large lattice vacancy with Δ≠0\Delta\neq 0 shows 2Δ2\Delta zero-conductance dips in the single-channel region, however, the large lattice vacancy with Δ=0\Delta=0 has no dip structure in this region. The connection between this conductance rule and the Longuet-Higgins conjecture is also discussed

    Enhanced Coherence of Antinodal Quasiparticles in a Dirty d-wave Superconductor

    Full text link
    Recent ARPES experiments show a narrow quasiparticle peak at the gap edge along the antinodal [1,0]-direction for the overdoped cuprate superconductors. We show that within weak coupling BCS theory for a d-wave superconductor the s-wave single-impurity scattering cross section vanishes for energies of the gap edge. This coherence effect occurs through multiple scattering off the impurity. For small impurity concentrations the spectral function has a pronounced increase of the (scattering) lifetime for antinodal quasiparticles but shows a very broad peak in the nodal direction, in qualitative agreement with experiment and in strong contrast to the behavior observed in underdoped cuprates.Comment: 4 pages, 3 figures, submitte

    Theoretical Study on Transport Properties of Normal Metal - Zigzag Graphene Nanoribbon - Normal Metal Junctions

    Full text link
    We investigate transport properties of the junctions in which the graphene nanoribbon with the zigzag shaped edges consisting of the NN legs is sandwiched by the two normal metals by means of recursive Green's function method. The conductance and the transmission probabilities are found to have the remarkable properties depending on the parity of NN. The singular behaviors close to E=0 with EE being the Fermi energy are demonstrated. The channel filtering is shown to occur in the case with N=N= even.Comment: 4 pages, 5 figure

    Correlation effects of carbon nanotubes at boundaries: Spin polarization induced by zero-energy boundary states

    Full text link
    When a carbon nanotube is truncated with a certain type of edges, boundary states localized near the edges appear at the fermi level. Starting from lattice models, low energy effective theories are constructed which describe electron correlation effects on the boundary states. We then focus on a thin metallic carbon nanotube which supports one or two boundary states, and discuss physical consequences of the interaction between the boundary states and bulk collective excitations. By the renormalization group analyses together with the open boundary bosonization, we show that the repulsive bulk interactions suppress the charge fluctuations at boundaries, and assist the spin polarization.Comment: 8 pages, 1 figur

    Behavior-associated and post-consumption glucose entry into the nucleus accumbens extracellular space during glucose free-drinking in trained rats

    Get PDF
    Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc) during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain’s extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells

    Behavior-associated and post-consumption glucose entry into the nucleus accumbens extracellular space during glucose free-drinking in trained rats

    Get PDF
    Glucose is the primary energetic substrate for the metabolic activity of brain cells and its proper delivery from the arterial blood is essential for neural activity and normal brain functions. Glucose is also a unique natural reinforcer, supporting glucose-drinking behavior without food or water deprivation. While it is known that glucose enters brain tissue via gradient-dependent facilitated diffusion, it remains unclear how glucose levels are changed during natural behavior and whether the direct central action of ingested glucose can be involved in regulating glucose-drinking behavior. Here, we used glucose biosensors with high-speed amperometry to examine the pattern of phasic and tonic changes in extracellular glucose in the nucleus accumbens (NAc) during unrestricted glucose-drinking in well-trained rats. We found that the drinking behavior is highly cyclic and is associated with relatively large and prolonged increases in extracellular glucose levels. These increases had two distinct components: a highly phasic but relatively small behavior-related rise and a larger tonic elevation that results from the arrival of consumed glucose into the brain’s extracellular space. The large post-ingestion increases in NAc glucose began minutes after the cessation of drinking and were consistently associated with periods of non-drinking, suggesting that the central action of ingested glucose could inhibit drinking behavior by inducing a pause in activity between repeated drinking bouts. Finally, the difference in NAc glucose responses found between active, behavior-mediated and passive glucose delivery via an intra-gastric catheter confirms that motivated behavior is also associated with metabolic glucose use by brain cells

    Nonuniversal Shot Noise in Disordered Quantum Wires with Channel-Number Imbalance

    Full text link
    The number of conducting channels for one propagating direction is equal to that for the other direction in ordinary quantum wires. However, they can be imbalanced in graphene nanoribbons with zigzag edges. Employing the model system in which a degree of channel-number imbalance can be controlled, we calculate the shot-noise power at zero frequency by using the Boltzmann-Langevin approach. The shot-noise power in an ordinary diffusive conductor is one-third of the Poisson value. We show that with increasing the degree of channel-number imbalance, the universal one-third suppression breaks down and a highly nonuniversal behavior of shot noise appears.Comment: 10 pages, 3 figure
    • …
    corecore