4,768 research outputs found

    Performance Enhancement of the Flexible Transonic Truss-Braced Wing Aircraft Using Variable-Camber Continuous Trailing-Edge Flaps

    Get PDF
    Aircraft designers are to a growing extent using vehicle flexibility to optimize performance with objectives such as gust load alleviation and drag minimization. More complex aerodynamically optimized configurations may also require dynamic loads and perhaps eventually flutter suppression. This paper considers an aerodynamically optimized truss-braced wing aircraft designed for a Mach 0.745 cruise. The variable camber continuous trailing edge flap concept with a feedback control system is used to enhance aeroelastic stability. A linearized reduced order aerodynamic model is developed from unsteady Reynolds averaged Navier-Stokes simulations. A static output feedback controller is developed from that model. Closed-loop simulations using the reduced order aerodynamic model show that the controller is effective in stabilizing the vehicle dynamics

    Archie's saturation exponent for natural gas hydrate in coarse‐grained reservoirs

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 123 (2018): 2069-2089, doi:10.1002/2017JB015138.Accurately quantifying the amount of naturally occurring gas hydrate in marine and permafrost environments is important for assessing its resource potential and understanding the role of gas hydrate in the global carbon cycle. Electrical resistivity well logs are often used to calculate gas hydrate saturations, Sh, using Archie's equation. Archie's equation, in turn, relies on an empirical saturation parameter, n. Though n = 1.9 has been measured for ice‐bearing sands and is widely used within the hydrate community, it is highly questionable if this n value is appropriate for hydrate‐bearing sands. In this work, we calibrate n for hydrate‐bearing sands from the Canadian permafrost gas hydrate research well, Mallik 5L‐38, by establishing an independent downhole Sh profile based on compressional‐wave velocity log data. Using the independently determined Sh profile and colocated electrical resistivity and bulk density logs, Archie's saturation equation is solved for n, and uncertainty is tracked throughout the iterative process. In addition to the Mallik 5L‐38 well, we also apply this method to two marine, coarse‐grained reservoirs from the northern Gulf of Mexico Gas Hydrate Joint Industry Project: Walker Ridge 313‐H and Green Canyon 955‐H. All locations yield similar results, each suggesting n ≈ 2.5 ± 0.5. Thus, for the coarse‐grained hydrate bearing (Sh > 0.4) of greatest interest as potential energy resources, we suggest that n = 2.5 ± 0.5 should be applied in Archie's equation for either marine or permafrost gas hydrate settings if independent estimates of n are not available.DOE Grant Number: DE‐FE0023919; Gas Hydrate Project of the U.S. Geological Survey's Coastal and Marine Geology Program2018-08-1

    Reduced Order Modeling for Transonic Aeroservoelastic Control Law Development

    Get PDF
    As aircraft become more flexible, aeroelastic considerations become increasingly important and complex, particularly for transonic flight where nonlinearities in the flow render linear analysis tools less effective. In order to analyze these aeroelastic interactions between the fluid and the structure efficiently, reduced order models (ROMs) are sometimes generated from and used in place of computational fluid dynamics solutions. In this paper, several aerodynamic ROMs are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion. Hence, the aeroelastic ROMs presented here are appropriate for use in aeroservoelastic applications and are intended to be used for aeroservoelastic control law development. These ROMs are used to simulate a number of test cases with and without control surface involvement. Results show that several of the ROMs generated in the paper are able to predict results similar to solutions of higher-order computational methods

    The role of proton precipitation in Jovian aurora: Theory and observation

    Get PDF
    It was proposed that the Jovian auroral emissions observed by Voyager spacecraft could be explained by energetic protons precipitating into the upper atmosphere of Jupiter. Such precipitation of energetic protons results in Doppler-shifted Lyman alpha emission that can be quantitatively analyzed to determine the energy flux and energy distribution of the incoming particle beam. Modeling of the expected emission from a reasonably chosen Voyager energetic proton spectrum can be used in conjunction with International Ultraviolet Explorer (IUE) observations, which show a relative lack of red-shifted Lyman alpha emission, to set upper limits on the amount of proton precipitation taking place in the Jovian aurora. Such calculations indicate that less than 10 percent of the ultraviolet auroral emissions at Jupiter can be explained by proton precipitation

    The precipitation of energetic heavy ions into the upper atmosphere of Jupiter

    Get PDF
    Evidence for auroral particle precipitation at Jupiter was provided by the ultraviolet spectrometers onboard the Voyagers 1 and 2 spacecraft and by the International Ultraviolet Explorer (IUE). Magnetospheric measurements made by instruments onboard the Voyager spacecraft show that energetic sulfur and oxygen ions are precipitating into the upper atmosphere of Jupiter. A theoretical model has been constructed describing the interaction of precipitating oxygen with the Jovian atmosphere. The auroral energy is deposited in the atmosphere by means of ionization, excitation, and dissociation and heating of the atmospheric gas. Energetic ion and electron precipitation are shown to have similar effects on the atmosphere and ionosphere of Jupiter

    Chandra Observation of an X-ray Flare at Saturn: Evidence for Direct Solar Control on Saturn's Disk X-ray Emissions

    Get PDF
    Saturn was observed by Chandra ACIS-S on 20 and 26-27 January 2004 for one full Saturn rotation (10.7 hr) at each epoch. We report here the first observation of an X-ray flare from Saturn's non-auroral (low-latitude) disk, which is seen in direct response to an M6-class flare emanating from a sunspot that was clearly visible from both Saturn and Earth. Saturn's disk X-ray emissions are found to be variable on time scales of hours to weeks to months, and correlated with solar F10.7 cm flux. Unlike Jupiter, X-rays from Saturn's polar (auroral) region have characteristics similar to those from its disk. This report, combined with earlier studies, establishes that disk X-ray emissions of the giant planets Saturn and Jupiter are directly regulated by processes happening on the Sun. We suggest that these emissions could be monitored to study X-ray flaring from solar active regions when they are on the far side and not visible to Near-Earth space weather satellites.Comment: Total 12 pages including 4 figure

    Active Flutter Suppression Using Reduced-Order Modeling for Transonic Aeroservoelastic Control Law Development

    Get PDF
    In this paper, several aerodynamic reduced-order models (ROMs) are generated and coupled with structural models to form aeroelastic ROMs. The aerodynamic ROMs generated here include the effects of control surface motion and are appropriate for use in aeroservoelastic applications. Simple observer-based full-state feedback controllers were designed from these aeroelastic ROMs. Additionally, observer gain matrices were designed from and coupled to the aeroelastic ROMs. Each (linear) observer was then used to estimate the dynamics of a (nonlinear) stand-alone computational fluid-structure dynamics simulation. Then, using the estimated states and the full-state feedback controller, control surface commands were fed back into the computational fluid-structure dynamics simulation to successfully achieve active flutter suppression. The process, as well as some results, are presented in this paper
    corecore