486 research outputs found

    Methyl 2-amino-5-iso­propyl-1,3-thia­zole-4-carboxyl­ate

    Get PDF
    The title compound, C8H12N2O2S, forms a supramolecular network based on N-HN hydrogen-bonded centrosymmetric dimers that are linked in turn by N-HO contacts

    Precise Particle Tracking Against a Complicated Background: Polynomial Fitting with Gaussian Weight

    Full text link
    We present a new particle tracking software algorithm designed to accurately track the motion of low-contrast particles against a background with large variations in light levels. The method is based on a polynomial fit of the intensity around each feature point, weighted by a Gaussian function of the distance from the centre, and is especially suitable for tracking endogeneous particles in the cell, imaged with bright field, phase contrast or fluorescence optical microscopy. Furthermore, the method can simultaneously track particles of all different sizes, and allows significant freedom in their shape. The algorithm is evaluated using the quantitative measures of accuracy and precision of previous authors, using simulated images at variable signal-to-noise ratios. To these we add a new test of the error due to a non-uniform background. Finally the tracking of particles in real cell images is demonstrated. The method is made freely available for non-commencial use as a software package with a graphical user-inferface, which can be run within the Matlab programming environment

    Dynamics of semi-flexible polymer solutions in the highly entangled regime

    Full text link
    We present experimental evidence that the effective medium approximation (EMA), developed by D.C. Morse [Phys. Rev. E {\bf 63}, 031502, (2001)], provides the correct scaling law of the macroscopic plateau modulus G0ρ4/3Lp1/3G^{0}\propto\rho^{4/3}L^{-1/3}_{p} (where ρ\rho is the contour length per unit volume and LpL_{p} is the persistence length) of semi-flexible polymer solutions, in the highly entangled concentration regime. Competing theories, including a self-consistent binary collision approximation (BCA), have instead predicted G0ρ7/5Lp1/5G^{0}\propto\rho^{7/5}L^{-1/5}_{p}. We have tested both the EMA and BCA scaling predictions using actin filament (F-actin) solutions which permit experimental control of LpL_p independently of other parameters. A combination of passive video particle tracking microrheology and dynamic light scattering yields independent measurements of the elastic modulus GG and LpL_{p} respectively. Thus we can distinguish between the two proposed laws, in contrast to previous experimental studies, which focus on the (less discriminating) concentration functionality of GG.Comment: 4 pages, 6 figures, Phys. Rev. Lett. (accepted

    Direct conversion of rheological compliance measurements into storage and loss moduli

    Get PDF
    We remove the need for Laplace/inverse-Laplace transformations of experimental data, by presenting a direct and straightforward mathematical procedure for obtaining frequency-dependent storage and loss moduli (G(ω)G'(\omega) and G"(ω)G"(\omega) respectively), from time-dependent experimental measurements. The procedure is applicable to ordinary rheological creep (stress-step) measurements, as well as all microrheological techniques, whether they access a Brownian mean-square displacement, or a forced compliance. Data can be substituted directly into our simple formula, thus eliminating traditional fitting and smoothing procedures that disguise relevant experimental noise.Comment: 4 page

    Collected papers

    Get PDF

    Memory effects and L\'evy walk dynamics in intracellular transport of cargoes

    Full text link
    We demonstrate the phenomenon of cumulative inertia in intracellular transport involving multiple motor proteins in human epithelial cells by measuring the empirical survival probability of cargoes on the microtubule and their detachment rates. We found the longer a cargo moves along a microtubule, the less likely it detaches from it. As a result, the movement of cargoes is non-Markovian and involves a memory. We observe memory effects on the scale of up to 2 seconds. We provide a theoretical link between the measured detachment rate and the super-diffusive Levy walk-like cargo movement.Comment: 9 pages, 6 figure

    Intracellular microrheology of motile Amoeba proteus

    Get PDF
    The motility of motile Amoeba proteus was examined using the technique of passive particle tracking microrheology, with the aid of newly-developed particle tracking software, a fast digital camera and an optical microscope. We tracked large numbers of endogeneous particles in the amoebae, which displayed subdiffusive motion at short time scales, corresponding to thermal motion in a viscoelastic medium, and superdiffusive motion at long time scales due to the convection of the cytoplasm. Subdiffusive motion was characterised by a rheological scaling exponent of 3/4 in the cortex, indicative of the semiflexible dynamics of the actin fibres. We observed shear-thinning in the flowing endoplasm, where exponents increased with increasing flow rate; i.e. the endoplasm became more fluid-like. The rheology of the cortex is found to be isotropic, reflecting an isotropic actin gel. A clear difference was seen between cortical and endoplasmic layers in terms of both viscoelasticity and flow velocity, where the profile of the latter is close to a Poiseuille flow for a Newtonian fluid

    Extreme heterogeneity in the microrheology of lamellar surfactant gels analyzed with neural networks

    Full text link
    The heterogeneity of the viscoelasticity of a lamellar gel network based on cetyl-trimethylammonium chloride (CTAC) and ceto-stearyl alcohol was studied using particle tracking microrheology. A recurrent neural network (RNN) architecture was used for estimating the Hurst exponent, HH, on small sections of tracks of probe spheres moving with fractional Brownian motion. Thus dynamic segmentation of tracks via neural networks was used in microrheology for the first time and it is significantly more accurate than using mean square displacements. An ensemble of 414 particles produces a mean squared displacement (MSD) that is subdiffusive in time, tt, with a power law of the form t0.74±0.02t^{0.74\pm0.02}, indicating power law viscoelasticity. RNN analysis of the probability distributions of HH, combined with detailed analysis of the time-averaged MSDs of individual tracks, revealed diverse diffusion processes belied by the simple scaling of the ensemble MSD, such as caging phenomena, which give rise to the complex viscoelasticity of lamellar gels.Comment: 15 pages without references (17 with references), 13 figure

    Adsorption of DNA onto positively charged amidine colloidal spheres and the resultant bridging interaction

    Get PDF
    The complexation behaviour of duplex linear DNA (negatively charged) with amidine functionalised sub-micron latex spheres (positively charged) was studied using dynamic light scattering (DLS) and a PALS interferrometric zeta potential sizer. Four types of DNA-sphere complex were investigated as a function of component concentration by combining amidine functionalised polystyrene microspheres with radii of 10.5 nm and 60 nm, and herring DNA of lengths of 35 nm and 85 nm. At low DNA concentrations (cDNA), the undercharged complexes showed a small increase in measured hydrodynamic radius (Rh) and a decrease in zeta potential with increasing cDNA. Within a critical DNA concentration range Rh was seen to peak sharply, and the zeta potentials were 0 mV, corresponding to the formation of unstable neutral complexes. Immediately above this concentration region the measured Rh values became comparable with those at low cDNA, and the zeta potential became negative, indicating the formation of stable overcharged complexes. The small and large spheres formed multi-sphere and single sphere overcharged aggregates respectively, which is thought to be determined by the relative magnitude of the chain persistence length (50 nm) and the sphere radius, switching on or off the DNA bridging interaction
    corecore