7,901 research outputs found
Kondo effect of Co adatoms on Ag monolayers on noble metal surfaces
The Kondo temperature of single Co adatoms on monolayers of Ag on Cu
and Au(111) is determined using Scanning Tunneling Spectroscopy. of Co on
a single monolayer of Ag on either substrate is essentially the same as that of
Co on a homogenous Ag(111) crystal. This gives strong evidence that the
interaction of surface Kondo impurities with the substrate is very local in
nature. By comparing found for Co on Cu, Ag, and Au (111)-surfaces we
show that the energy scale of the many-electron Kondo state is insensitive to
the properties of surface states and to the energetic position of the projected
bulk band edges.Comment: 4 pages, 3 figure
Lattice sites of ion-implanted Li in diamond
Published in: Appl. Phys. Lett. 66 (1995) 2733-2735
citations recorded in [Science Citation Index]
Abstract: Radioactive Li ions were implanted into natural IIa diamonds at temperatures between 100 K and 900 K. Emission channelling patterns of a-particles emitted in the nuclear decay of 8Li (t1/2 = 838 ms) were measured and, from a comparison with calculated emission channelling and blocking effects from Monte Carlo simulations, the lattice sites taken up by the Li ions were quantitatively determined. A fraction of 40(5)% of the implanted Li ions were found to be located on tetrahedral interstitial lattice sites, and 17(5)% on substitutional sites. The fractions of implanted Li on the two lattice sites showed no change with temperature, indicating that Li diffusion does not take place within the time window of our measurements.
Experimental Identification of Modal Density Parameters of Light Weight Structures
A basic requirement for the analysis of vibro-acoustic problems by means of the Statistical Energy Analysis (SEA) is the knowledge of modal densities of the tested subsystems. For simple structures, modal densities are obtained by theoretical solutions. The application of the SEA to complex light weight structures often leads to sophisticated subsystems the modal densities of which cannot be received from theoretical solutions. Therefore, experimental procedures for the identification of modal densities are needed. This paper describes an experimental method based on the theoretical relation between the modal density and the real part of the point admittance, the conductance. Simulations of a simply supported rectangular plate show the accuracy and the limits of the method A steel plate and a thin-walled cylinder made offiber composite material have been thoroughly investigated by experiments. By this, the influence of the mass correction of the measured conductances is discussed in the paper. The experimental results are compared with theoretical results obtained from the code AutoSEA2. For medium and higher frequencies the results are in fairly good agreement
Equianalytic and equisingular families of curves on surfaces
We consider flat families of reduced curves on a smooth surface S such that
each member C has the same number of singularities of fixed singularity types
and the corresponding (locally closed) subscheme H of the Hilbert scheme of S.
We are mainly concerned with analytic resp. topological singularity types and
give a sufficient condition for the smoothness of H (at C). Our results for
S=P^2 seem to be quite sharp for families of cuves of small degree d.Comment: LaTeX v 2.0
Kondo temperature of magnetic impurities at surfaces
Based on the experimental observation, that only the close vicinity of a
magnetic impurity at metal surfaces determines its Kondo behaviour, we
introduce a simple model which explains the Kondo temperatures observed for
cobalt adatoms at the (111) and (100) surfaces of Cu, Ag, and Au. Excellent
agreement between the model and scanning tunneling spectroscopy (STS)
experiments is demonstrated. The Kondo temperature is shown to depend on the
occupation of the d-level determined by the hybridization between adatom and
substrate with a minimum around single occupancy.Comment: 4 pages, 2 figure
- …