76 research outputs found

    Extraction of main levels of a building from a large point cloud

    Get PDF
    Horizontal levels are references entities, the base of man-made environments. Their creation is the first step for various applications including the BIM (Building Information Modelling). BIM is an emerging methodology, widely used for new constructions, and increasingly applied to existing buildings (scan-to-BIM). The as-built BIM process is still mainly manual or semi-automatic and therefore is highly time-consuming. The automation of the as-built BIM is a challenging topic among the research community. This study is part of an ongoing research into the scan-to-BIM process regarding the extraction of the principal structure of a building. More specifically, here we present a strategy to automatically detect the building levels from a large point cloud obtained with a terrestrial laser scanner survey. The identification of the horizontal planes is the first indispensable step to produce an as-built BIM model. Our algorithm, developed in C++, is based on plane extraction by means of the RANSAC algorithm followed by the minimization of the quadrate sum of points-plane distance. Moreover, this paper will take an in-depth look at the influence of data resolution in the accuracy of plane extraction and at the necessary accuracy for the construction of a BIM model. A laser scanner survey of a three floors building composed by 36 scan stations has produced a point cloud of about 550 million points. The estimated plane parameters at different data resolution are analysed in terms of distance from the full points cloud resolution

    A tool for mapping the evolution of a lava field through the Etna video-surveillance camera network

    Get PDF
    In active volcanic areas it is often difficult carry out direct surveys during an eruption, remote sensing techniques based on airborne/satellite platforms and ground-based sensors have remarkable monitoring potentialities in terms of safety and observation capability. In addition, the recent development of high resolution digital cameras, laser scanners and SAR instruments have improved the ability to obtain reliable measurements for modelling the evolution of effusive and explosive eruptions by following the rate of advancement of a lava flow or the dispersal of a volcanic plume. In order to collect data at an adequate level of accuracy and frequency it is not possible to exclusively rely on airborne or satellite methods and it is necessary to carry out measurements using also remote sensing instruments operating on the ground. Among the other techniques, the use of a simplified photogrammetric approach based a video-surveillance camera network represents a straightforward alternative for rapid mapping in active volcanic areas. Therefore a procedure for optimizing and extending the observational capability of the Etna NEtwork of Thermal and VIsible cameras (NETVIS) for systematically monitoring and quantifying surface sin-eruptive processes was implemented. The activity included also the extension of the permanent video-surveillance network by installing additional mobile stations. A dedicated tool for automatic processing of image datasets was developed and tested in both simulated and real scenarios to obtain a time series of digital orthophotos for tracking the evolution of a lava flow emplacement. The developed tool was tested by processing images acquired by the Etna_NETVIS sensors, in particular from Monte Cagliato thermal camera, during the 2011 paroxysmal episodes of the New South East Crater that poured lava flows in the Valle del Bove.PublishedRoma, Italia5V. Sorveglianza vulcanica ed emergenzeope

    The Use of Surveillance Cameras for the Rapid Mapping of Lava Flows: An Application to Mount Etna Volcano

    Get PDF
    In order to improve the observation capability in one of the most active volcanic areas in the world, Mt. Etna, we developed a processing method to use the surveillance cameras for a quasi real-time mapping of syn-eruptive processes. Following an evaluation of the current performance of the Etna permanent ground NEtwork of Thermal and Visible Sensors (Etna_NETVIS), its possible implementation and optimization was investigated to determine the locations of additional observation sites to be rapidly set up during emergencies. A tool was then devised to process time series of ground-acquired images and extract a coherent multi-temporal dataset of georeferenced map. The processed datasets can be used to extract 2D features such as evolution maps of active lava flows. The tool was validated on ad-hoc test fields and then adopted to map the evolution of two recent lava flows. The achievable accuracy (about three times the original pixel size) and the short processing time makes the tool suitable for rapidly assessing lava flow evolutions, especially in the case of recurrent eruptions, such as those of the 2011–2015 Etna activity. The tool can be used both in standard monitoring activities and during emergency phases (eventually improving the present network with additional mobile stations) when it is mandatory to carry out a quasi-real-time mapping to support civil protection actions. The developed tool could be integrated in the control room of the Osservatorio Etneo, thus enabling the Etna_NETVIS for mapping purposes and not only for video surveillance.Published1925V. Sorveglianza vulcanica ed emergenzeJCR Journalope

    Fish bone foreign body presenting with an acute fulminating retropharyngeal abscess in a resource-challenged center: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A retropharyngeal abscess is a potentially life-threatening infection in the deep space of the neck, which can compromise the airway. Its management requires highly specialized care, including surgery and intensive care, to reduce mortality. This is the first case of a gas-forming abscess reported from this region, but not the first such report in the literature.</p> <p>Case presentation</p> <p>We present a case of a 16-month-old Yoruba baby girl with a gas-forming retropharyngeal abscess secondary to fish bone foreign body with laryngeal spasm that was managed in the recovery room. We highlight specific problems encountered in the management of this case in a resource-challenged center such as ours.</p> <p>Conclusion</p> <p>We describe an unusual presentation of a gas-forming organism causing a retropharyngeal abscess in a child. The patient's condition was treated despite the challenges of inadequate resources for its management. We recommend early recognition through adequate evaluation of any oropharyngeal injuries or infection and early referral to the specialist with prompt surgical intervention.</p

    Mind-wandering and alterations to default mode network connectivity when listening to naturalistic versus artificial sounds

    Get PDF
    Naturalistic environments have been demonstrated to promote relaxation and wellbeing. We assess opposing theoretical accounts for these effects through investigation of autonomic arousal and alterations of activation and functional connectivity within the default mode network (DMN) of the brain while participants listened to sounds from artificial and natural environments. We found no evidence for increased DMN activity in the naturalistic compared to artificial or control condition, however, seed based functional connectivity showed a shift from anterior to posterior midline functional coupling in the naturalistic condition. These changes were accompanied by an increase in peak high frequency heart rate variability, indicating an increase in parasympathetic activity in the naturalistic condition in line with the Stress Recovery Theory of nature exposure. Changes in heart rate and the peak high frequency were correlated with baseline functional connectivity within the DMN and baseline parasympathetic tone respectively, highlighting the importance of individual neural and autonomic differences in the response to nature exposure. Our findings may help explain reported health benefits of exposure to natural environments, through identification of alterations to autonomic activity and functional coupling within the DMN when listening to naturalistic sounds

    The vaginal microbiota of pregnant women who subsequently have spontaneous preterm labor and delivery and those with a normal delivery at term

    Full text link

    THREE DIMENSIONAL RECONSTRUCTION WORKFLOWS FOR LOST CULTURAL HERITAGE MONUMENTS EXPLOITING PUBLIC DOMAIN AND PROFESSIONAL PHOTOGRAMMETRIC IMAGERY

    No full text
    In our paper, we document experiments and results of image-based 3d reconstructions of famous heritage monuments which were recently damaged or completely destroyed by the so-called Islamic state in Syria and Iraq. The specific focus of our research is on the combined use of professional photogrammetric imagery and of publicly available imagery from the web for optimally 3d reconstructing those monuments. The investigated photogrammetric reconstruction techniques include automated bundle adjustment and dense multi-view 3d reconstruction using public domain and professional imagery on the one hand and an interactive polygonal modelling based on projected panoramas on the other. Our investigations show that the combination of these two image-based modelling techniques delivers better results in terms of model completeness, level of detail and appearance

    Toward the Interactive 3D Modelling Applied to Ponte Rotto in Rome

    No full text
    We present the first step of a research aimed at automating a driven interactive 3D modeling of an existing architectural object. The method is based on oriented multi-image spherical panoramas produced by stitching techniques. The photogrammetric process has two steps: the creation of a semi-automatic process to find homolog points in two panoramas; the creation of parametric definitions for an interactive modeling creating points, segments, and surfaces based on the plotted points in the first step. By connecting these two steps, the creation of the model will be automatic, as we indicate the necessary points in just one panoramic photo. The principals of multi-view geometry and epipolar geometry were applied to simplify the calculation in the first step in order to create an automatic identification of the correspondent points in the other panorama. The epipolar geometry is described by both analytical and graphical programming, implementing in the first case a C++ application and in the second case a Rhinoceros and Grasshopper application. A case study of the Ponte Rotto in Rome (Italy) is presented

    COMBINING PUBLIC DOMAIN AND PROFESSIONAL PANORAMIC IMAGERY FOR THE ACCURATE AND DENSE 3D RECONSTRUCTION OF THE DESTROYED BEL TEMPLE IN PALMYRA

    No full text
    This paper exploits the potential of dense multi-image 3d reconstruction of destroyed cultural heritage monuments by either using public domain touristic imagery only or by combining the public domain imagery with professional panoramic imagery. The focus of our work is placed on the reconstruction of the temple of Bel, one of the Syrian heritage monuments, which was destroyed in September 2015 by the so called "Islamic State". The great temple of Bel is considered as one of the most important religious buildings of the 1st century AD in the East with a unique design. The investigations and the reconstruction were carried out using two types of imagery. The first are freely available generic touristic photos collected from the web. The second are panoramic images captured in 2010 for documenting those monuments. In the paper we present a 3d reconstruction workflow for both types of imagery using state-of-the art dense image matching software, addressing the non-trivial challenges of combining uncalibrated public domain imagery with panoramic images with very wide base-lines. We subsequently investigate the aspects of accuracy and completeness obtainable from the public domain touristic images alone and from the combination with spherical panoramas. We furthermore discuss the challenges of co-registering the weakly connected 3d point cloud fragments resulting from the limited coverage of the touristic photos. We then describe an approach using spherical photogrammetry as a virtual topographic survey allowing the co-registration of a detailed and accurate single 3d model of the temple interior and exterior
    corecore