12 research outputs found

    Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores

    Get PDF
    © 2018 by The American Society for Biochemistry and Molecular Biology, Inc. Surfactant protein D (SP-D), a C-type lectin and pattern-recognition soluble factor, plays an important role in immune surveillance to detect and eliminate human pulmonary pathogens. SP-D has been shown to protect against infections with the most ubiquitous airborne fungal pathogen, Aspergillus fumigatus, but the fungal surface component(s) interacting with SP-D is unknown. Here, we show that SP-D binds to melanin pigment on the surface of A. fumigatus dormant spores (conidia). SP-D also exhibited an affinity to two cell-wall polysaccharides of A. fumigatus, galactomannan (GM) and galactosaminogalactan (GAG). The immunolabeling pattern of SP-D was punctate on the conidial surface and was uniform on germinating conidia, in accordance with the localization of melanin, GM, and GAG. We also found that the collagen-like domain of SP-D is involved in its interaction with melanin, whereas its carbohydrate-recognition domain recognized GM and GAG. Unlike un-opsonized conidia, SP-D- opsonized conidia were phagocytosed more efficiently and stimulated the secretion of proinflammatory cytokines by human monocyte-derived macrophages. Furthermore, SP-D/ mice challenged intranasally with wildtype conidia or melanin ghosts (i.e. hollow melanin spheres) displayed significantly reduced proinflammatory cytokines in the lung compared with wildtype mice. In summary, SP-D binds to melanin present on the dormant A. fumigatus conidial surface, facilitates conidial phagocytosis, and stimulates the host immune response

    ELF1 is associated with systemic lupus erythematosus in Asian populations

    No full text
    Systemic lupus erythematosus (SLE) is an autoimmune disease with a strong genetic involvement. The susceptibility genes identified so far can only explain a small proportion of disease heritability. Through a genome-wide association in a Hong Kong Chinese cohort and subsequent replication in two other Asian populations, with a total of 3164 patients and 4482 matched controls, we identified association of ELF1 (E74-like factor 1) with SLE (rs7329174, OR = 1.26, joint P = 1.47 × 10 -8). ELF1 belongs to the ETS family of transcription factors and is known to be involved in T cell development and function. Database analysis revealed transcripts making use of three alternative exon1s for this gene. Near equivalent expression levels of distinct transcripts initiated from alternative exon1s were detected in peripheral blood mononuclear cells from both SLE patients and healthy controls. Although a direct association of rs7329174 with the three forms of transcripts for this gene was not detected, these findings support an important role of ELF1 in SLE susceptibility and suggest a potentially tight regulation for the expression of this gene. © The Author 2010. Published by Oxford University Press. All rights reserved.link_to_OA_fulltex

    Second-Order Nonlinear Optical Organic Materials: Recent Developments

    No full text

    Mouse models of atherosclerosis: a historical perspective and recent advances

    No full text

    Development of phycology in Malaysia

    No full text
    corecore