26 research outputs found

    TOPYDE: A Tool for Physical Database Design

    Get PDF
    We describe a tool for physical database design based on a combination of theoretical and pragmatic approaches. The tool takes as input a relational schema, the workload defined on the schema, and some additional database characteristics and produces as output a physical schema. For the time being, the tool is tuned towards Ingres

    Polylectrolyte- versus membrane-coated electrodes for energy production by Capmix salinity exchange methods

    Get PDF
    La versión final publicada se puede encontrar en: Journal of Power Sources, 302(20): 387-393 (2016). http://dx.doi.org/10.1016/j.jpowsour.2015.10.076In this paper we analyze the energy and power achievable by means of a re- cently proposed salinity gradient technique for energy production. The method, denominated soft electrode or SE, is based on the potential di erence that can be generated between two porous electrodes coated with cationic and anionic polyelectrolytes. It is related to the Capacitive Donnan Potential (CDP) tech- nique, where the electrical potential variations are mostly related to the Donnan potential, of ion-selective membranes in the case of CDP, and of the polyelec- trolyte coating in SE. It is found that although SE is comparable to CDP in terms of energy production, it presents slower rates of voltage change, and lower achieved power. The separate analysis of the response of positively and neg- atively coated electrodes shows that the latter produces most of the voltage rise and also of the response delay. These results, together with electrokinetic techniques, give an idea on how the two types of polyelectrolytes adsorb on the carbon surface and a ect di erently the di usion layer. It is possible to suggest that the SE technique is a promising one, and it may overcome the drawbacks associated to the use of membranes in CDP.MINECO FIS2013-47666-C3-1-RJunta de Andalucía, PE2012-FQM0694European Union 7th Framework Programme (FP7/2007–2013) under agreement No. 25686

    Effect of Solution Composition on the Energy Production by Capacitive Mixing in Membrane-Electrode Assembly

    Get PDF
    The final edited version of the paper can be found at: http://pubs.acs.org/articlesonrequest/AOR-c9UMxSzGY3eiU5SENNgT The complete citation is: Ahualli, S.; et al. Effect of Solution Composition on the Energy Production by Capacitive Mixing in Membrane-Electrode Assembly. Journal of Physical Chemistry, 118(29): 15590-15599 (2014). DOI:10.1021/jp504461mOpen access in the Journal on May 26, 2015In this work we consider the extent to which the presence of multi-valent ions in solution modifies the equilibrium and dynamics of the energy production in a capacitive cell built with ion-exchange membranes in contact with high surface area electrodes. The cell potential in open circuit (OCV) is controlled by the difference between both membrane potentials, simulated as constant volume charge regions. A theoretical model is elaborated for steady state OCV, first in the case of monovalent solutions, as a reference. This is compared to the results in multi-ionic systems, containing divalent cations in concentrations similar to those in real sea water. It is found that the OCV is reduced by about 25 % (as compared to the results in pure NaCl solutions) due to the presence of the divalent ions, even in low concentrations. Interestingly, this can be related to the “uphill” transport of such ions against their concentration gradients. On the contrary, their effect on the dynamics of the cell potential is negligible in the case of highly charged membranes. The comparison between model predictions and experimental results shows a very satisfactory agreement, and gives clues for the practical application of these recently introduced energy production methods.The research leading to these results received funding from the European Union 7th Framework Programme (FP7/2007-2013) under agreement No. 256868. Further financial support from Junta de Andalucia, Spain (PE2012-FQM 694) is also acknowledged. One of us, M.M.F., received financial support throughan FPU grant from the Universityof Granada

    Synchronisation Tools in NUCLEUS

    No full text

    Automatic Physical Database Design

    No full text

    Fouling management in oceanic carbon capture via in-situ electrochemical bipolar membrane electrodialysis

    No full text
    To assist reaching net-zero emissions, the dissolved carbon in the ocean can be extracted to enable an indirect air capture. An electrochemical bipolar membrane electrodialysis (BPMED) is a sustainable method for such capture. The BPMED enables a pH-swing that manipulates the oceanic carbonate-equilibrium using electricity. However, at alkaline-pH, an in-situ process suffers from inorganic fouling within the stack, increasing the cost of capture. In the current work, we investigate fouling management strategies including fouling control (i.e., membrane- configuration and current-flow rate optimization) and fouling removal methods. Fouling removal methods including air and CO2(g) sparging, dissolved CO2 (aq) cleaning, back-pressure, flow rate increase, and acid-wash are investigated under accelerated fouling conditions. The stack configuration containing the BPM-AEM pairs shows 4 × lower fouling than the BPM-CEM stack, while the carbonate-extraction and faradaic efficiency are similar for both configurations. From the scaling removal methods, only the acid wash combined with the back-pressure removed all the inorganic fouling, recovering both the cell voltage and pressure drop to their initial values. Upon the air sparging, the total cell voltage and pressure drop increased even more due to the trapped gas inside the netted spacers. Cleaning via dissolved and gaseous CO2 decreases the cell pH, dissolving hydroxide/carbonate-based fouling, but decreases the carbonate-removal significantly which is not preferred. Applying the back-pressure and higher flow rates decelerated the scaling buildup but was not enough to remove the fouling. Using BPM-AEM stacks in combination with periodic acid cleaning has potential as resilient oceanic carbon removal via BPMED.</p

    Fouling management in oceanic carbon capture via in-situ electrochemical bipolar membrane electrodialysis

    No full text
    To assist reaching net-zero emissions, the dissolved carbon in the ocean can be extracted to enable an indirect air capture. An electrochemical bipolar membrane electrodialysis (BPMED) is a sustainable method for such capture. The BPMED enables a pH-swing that manipulates the oceanic carbonate-equilibrium using electricity. However, at alkaline-pH, an in-situ process suffers from inorganic fouling within the stack, increasing the cost of capture. In the current work, we investigate fouling management strategies including fouling control (i.e., membrane- configuration and current-flow rate optimization) and fouling removal methods. Fouling removal methods including air and CO2(g) sparging, dissolved CO2 (aq) cleaning, back-pressure, flow rate increase, and acid-wash are investigated under accelerated fouling conditions. The stack configuration containing the BPM-AEM pairs shows 4 × lower fouling than the BPM-CEM stack, while the carbonate-extraction and faradaic efficiency are similar for both configurations. From the scaling removal methods, only the acid wash combined with the back-pressure removed all the inorganic fouling, recovering both the cell voltage and pressure drop to their initial values. Upon the air sparging, the total cell voltage and pressure drop increased even more due to the trapped gas inside the netted spacers. Cleaning via dissolved and gaseous CO2 decreases the cell pH, dissolving hydroxide/carbonate-based fouling, but decreases the carbonate-removal significantly which is not preferred. Applying the back-pressure and higher flow rates decelerated the scaling buildup but was not enough to remove the fouling. Using BPM-AEM stacks in combination with periodic acid cleaning has potential as resilient oceanic carbon removal via BPMED.ChemE/Transport Phenomen

    On-Flow Immobilization of Polystyrene Microspheres on β-Cyclodextrin-Patterned Silica Surfaces through Supramolecular Host-Guest Interactions

    No full text
    Species-specific isolation of microsized entities such as microplastics and resistant bacteria from waste streams is becoming a growing environmental challenge. By studying the on-flow immobilization of micron-sized polystyrene particles onto functionalized silica surfaces, we ascertain if supramolecular host-guest chemistry in aqueous solutions can provide an alternative technology for water purification. Polystyrene particles were modified with different degrees of adamantane (guest) molecules, and silica surfaces were patterned with β-cyclodextrin (β-CD, host) through microcontact printing (μCP). The latter was exposed to solutions of these particles flowing at different speeds, allowing us to study the effect of flow rate and multivalency on particle binding to the surface. The obtained binding profile was correlated with Comsol simulations. We also observed that particle binding is directly aligned with particle's ability to form host-guest interactions with the β-CD-patterned surface, as particle binding to the functionalized glass surface increased with higher adamantane load on the polystyrene particle surface. Because of the noncovalent character of these interactions, immobilization is reversible and modified β-CD surfaces can be recycled, which provides a positive outlook for their incorporation in water purification systems.</p

    On-Flow Immobilization of Polystyrene Microspheres on β-Cyclodextrin-Patterned Silica Surfaces through Supramolecular Host-Guest Interactions

    No full text
    Species-specific isolation of microsized entities such as microplastics and resistant bacteria from waste streams is becoming a growing environmental challenge. By studying the on-flow immobilization of micron-sized polystyrene particles onto functionalized silica surfaces, we ascertain if supramolecular host-guest chemistry in aqueous solutions can provide an alternative technology for water purification. Polystyrene particles were modified with different degrees of adamantane (guest) molecules, and silica surfaces were patterned with β-cyclodextrin (β-CD, host) through microcontact printing (μCP). The latter was exposed to solutions of these particles flowing at different speeds, allowing us to study the effect of flow rate and multivalency on particle binding to the surface. The obtained binding profile was correlated with Comsol simulations. We also observed that particle binding is directly aligned with particle's ability to form host-guest interactions with the β-CD-patterned surface, as particle binding to the functionalized glass surface increased with higher adamantane load on the polystyrene particle surface. Because of the noncovalent character of these interactions, immobilization is reversible and modified β-CD surfaces can be recycled, which provides a positive outlook for their incorporation in water purification systems.</p
    corecore