1,704 research outputs found

    An Experimental Investigation of Hot Machining with Induction to Improve Ti-5553 Machinability

    Get PDF
    The manufacturing of aeronautic parts with high mechanical properties requires the use of high performance materials. That’s why; new materials are used for landing gears such as the titanium alloy Ti-5553. The machining of this material leads to high cutting forces and temperatures, and poor machinability which requires the use of low cutting conditions. In order to increase the productivity rate, one solution could be to raise the workpiece initial temperature. Assisted hot machining consists in heating the workpiece material before the material removal takes place, in order to weaken the material mechanical properties, and thus reducing at least the cutting forces. First, a bibliography review has been done in order to determine all heating instruments used and the thermal alleviation that exists on conventional materials. An induction assisted hot machining was chosen and a system capable to maintain a constant temperature into the workpiece during machining (turning) was designed. Trails permit to identify the variation of cutting forces according to the initial temperature of the workpiece, with fixed cutting conditions according to the TMP (Tool-Material-Pair) methodology at ambient temperature. Tool life and deterioration mode are identified notably. The results analysis shows a low reduction of specific cutting forces for a temperature area compatible with industrial process. The reduction is more important at elevated temperature. However, it has consequences on quality of the workpiece surface and tool wear

    Tidal transports from satellite observations of earth’s magnetic field

    Get PDF
    The tides are a major driver of global oceanic mixing. While global tidal elevations are very well observed by satellite altimetry, the global tidal transports are much less well known. For twenty years, magnetic signals induced by the ocean tides have been detectable in satellite magnetometer observations, such as Swarm or CHAMP. Here, we demonstrate how satellite magnetometer observations can be used to directly derive global ocean tidal transports. As an advantage over other tidal transport estimates, our tidal estimates base on very few and very loose constraints from numerical forward models

    Influence de la tempĂ©rature sur l’usinabilitĂ© du Ti-5-5-5-3

    Get PDF
    The realization of aeronautic parts with strong mechanical properties requires the use of high performance materials. That’s why, some new materials are used for landing gears as refractory titanium (as Ti-5-5-5-3). The machining of this material leads to high cutting forces and temperatures. So, it is necessary to use low cutting conditions on the industrial machining process. In order to increase the productivity, it is possible to increase the initial temperature of the workpiece. Hot machining is a new research track. The principle consists in heating material before machining it, in order to take advantage of its mechanical properties reduction. First, studying the state of the art permit us to determine all heating instruments used and the thermal alleviation that exists on conventional materials. A heating by induction was chosen and a system capable to maintain a constant temperature into the workpiece during machining (turning) was conceived. The measure of the temperature is achieved in the setup of the workpiece by thermocouples and by thermography camera. Trails permit to identify the variation of cutting forces according to the initial temperature of the workpiece, with fixed cutting conditions according to the TMP (Tool- Material-Pair) methodology at ambient temperature. Tool life and deterioration type are identified notably. The results analysis shows a low reduction of specific cutting forces for a temperature area compatible with industrial process. The reduction is more important at elevated temperature. However, it has bad consequences on quality of the workpiece surface (oxidation, problem on surface integrity and mechanical properties degradation). In perspective, different ways of heating are studied to permit a localized and more effective heath compatible with the industrial application

    Tide-induced magnetic signals and their errors derived from CHAMP and Swarm satellite magnetometer observations

    Get PDF
    Satellite-measured tidal magnetic signals are of growing importance. These fields are mainly used to infer Earth’s mantle conductivity, but also to derive changes in the oceanic heat content. We present a new Kalman filter-based method to derive tidal magnetic fields from satellite magnetometers: KALMAG. The method’s advantage is that it allows to study a precisely estimated posterior error covariance matrix. We present the results of a simultaneous estimation of the magnetic signals of 8 major tides from 17 years of Swarm and CHAMP data. For the first time, robustly derived posterior error distributions are reported along with the reported tidal magnetic fields. The results are compared to other estimates that are either based on numerical forward models or on satellite inversions of the same data. For all comparisons, maximal differences and the corresponding globally averaged RMSE are reported. We found that the inter-product differences are comparable with the KALMAG-based errors only in a global mean sense. Here, all approaches give values of the same order, e.g., 0.09 nT-0.14 nT for M2. Locally, the KALMAG posterior errors are up to one order smaller than the inter-product differences, e.g., 0.12 nT vs. 0.96 nT for M2

    On the detectability of the magnetic fields induced by ocean circulation in geomagnetic satellite observations

    Get PDF
    Due to their sensitivity to conductivity and oceanic transport, magnetic signals caused by the movement of the ocean are a beneficial source of information. Satellite observed tidal-induced magnetic fields have already proven to be helpful to derive Earth’s conductivity or ocean heat content. However, magnetic signals caused by ocean circulation are still unobserved in satellite magnetometer data. We present a novel method to detect these magnetic signals from ocean circulation using an observing system simulation experiment. The introduced approach relies on the assimilation of satellite magnetometer data based on a Kalman filter algorithm. The separation from other magnetic contributions is attained by predicting the temporal behavior of the ocean-induced magnetic field through presumed proxies. We evaluate the proposed method in different test case scenarios. The results demonstrate a possible detectability of the magnetic signal in large parts of the ocean. Furthermore, we point out the crucial dependence on the magnetic signal’s variability and show that our approach is robust to slight spatial and temporal deviations of the presumed proxies. Additionally, we showed that including simple prior spatial constraints could further improve the assimilation results. Our findings indicate an appropriate sensitivity of the detection method for an application outside the presented observing system simulation experiment. Therefore, we finally discussed potential issues and required advances toward the method’s application on original geomagnetic satellite observations

    An experimental study of the high speed interaction between a labyrinth seal and an abradable coating in a turbo-engine application

    Get PDF
    A new high-speed test rig was designed to simulate the interactions between labyrinth seals and abradable coatings in similar turbo-engine operating conditions. To determine a solution for turbo-engine efficiency enhancement, we investigated the clearance reduction between the rotary parts in air systems, the successive starts and stops, the thermal expansion and the vibrations that might cause direct rub interactions between a rotary seal, known as a labyrinth seal, and a turbo-engine housing coated with a sacrificial abradable material. High interaction speeds from 0 to 130 m s−1 were obtained using a 5-axis milling machine fitted with a unique magnetic bearings spindle developed specifically for the study. The purpose of this paper is to study the interaction phenomena between an abradable material (Al–Si 6%) and a nickel alloy (Alloy 718) to obtain a first contact assessment under different turbo-engine operating conditions. The experimental results are first presented by visual observations of the posttest samples, as specified by accurate profile measurements. A quantitative approach to the interaction forces recorded during the tests and micrographic observations complete the preliminary study. This work provides new basic data for a preliminary study of the interaction between labyrinth seal teeth tips and abradable coatings in turbo-engine applications

    Assessing real-world vaccine effectiveness against severe forms of SARS-CoV-2 infection: an observational study from routine surveillance data in Switzerland.

    Get PDF
    BACKGROUND In Switzerland, SARS-CoV-2 vaccination campaigns started in early 2021. Vaccine coverage reached 65% of the population in December 2021, mostly with mRNA vaccines from Moderna and Pfizer-BioNtech. Simultaneously, the proportion of vaccinated among COVID-19-related hospitalisations and deaths rose, creating some confusion in the general population. We aimed to assess vaccine effectiveness against severe forms of SARS-CoV-2 infection using routine surveillance data on the vaccination status of COVID-19-related hospitalisations and deaths, and data on vaccine coverage in Switzerland. METHODS We considered all routine surveillance data on COVID-19-related hospitalisations and deaths received at the Swiss Federal Office of Public Health from 1 July to 1 December 2021. We estimated the relative risk of COVID-19-related hospitalisation or death for not fully vaccinated compared with fully vaccinated individuals, adjusted for the dynamics of vaccine coverage over time, by age and location. We stratified the analysis by age group and by calendar month. We assessed variations in the relative risk of hospitalisation associated with the time since vaccination. RESULTS We included a total of 5948 COVID-19-related hospitalisations of which 1245 (21%) were fully vaccinated patients, and a total of 739 deaths of which 259 (35%) were fully vaccinated. We found that the relative risk of COVID-19 related hospitalisation was 12.5 (95% confidence interval [CI] 11.7-13.4) times higher for not fully vaccinated than for fully vaccinated individuals. This translates into a vaccine effectiveness against hospitalisation of 92.0% (95% CI 91.4-92.5%). Vaccine effectiveness against death was estimated to be 90.3% (95% CI 88.6-91.8%). Effectiveness appeared to be comparatively lower in age groups over 70 and during the months of October and November 2021. We also found evidence of a decrease in vaccine effectiveness against hospitalisation for individuals vaccinated for 25 weeks or more, but this decrease appeared only in age groups below 70. CONCLUSIONS The observed proportions of vaccinated among COVD-19-related hospitalisations and deaths in Switzerland were compatible with a high effectiveness of mRNA vaccines from Moderna and Pfizer-BioNtech against hospitalisation and death in all age groups. Effectiveness appears comparatively lower in older age groups, suggesting the importance of booster vaccinations. We found inconclusive evidence that vaccine effectiveness wanes over time. Repeated analyses will be able to better assess waning and the effect of boosters

    Software engineering for AI-based systems: A survey

    Get PDF
    AI-based systems are software systems with functionalities enabled by at least one AI component (e.g., for image-, speech-recognition, and autonomous driving). AI-based systems are becoming pervasive in society due to advances in AI. However, there is limited synthesized knowledge on Software Engineering (SE) approaches for building, operating, and maintaining AI-based systems. To collect and analyze state-of-the-art knowledge about SE for AI-based systems, we conducted a systematic mapping study. We considered 248 studies published between January 2010 and March 2020. SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018. The most studied properties of AI-based systems are dependability and safety. We identified multiple SE approaches for AI-based systems, which we classified according to the SWEBOK areas. Studies related to software testing and software quality are very prevalent, while areas like software maintenance seem neglected. Data-related issues are the most recurrent challenges. Our results are valuable for: researchers, to quickly understand the state-of-the-art and learn which topics need more research; practitioners, to learn about the approaches and challenges that SE entails for AI-based systems; and, educators, to bridge the gap among SE and AI in their curricula.This work has been partially funded by the “Beatriz Galindo” Spanish Program BEAGAL18/00064 and by the DOGO4ML Spanish research project (ref. PID2020-117191RB-I00)Peer ReviewedPostprint (author's final draft
    • 

    corecore