1,739 research outputs found

    VHE Gamma-ray Afterglow Emission from Nearby GRBs

    Full text link
    Gamma-ray Bursts (GRBs) are among the potential extragalactic sources of very-high-energy (VHE) gamma-rays. We discuss the prospects of detecting VHE gamma-rays with current ground-based Cherenkov instruments during the afterglow phase. Using the fireball model, we calculate the synchrotron self-Compton (SSC) emission from forward-shock electrons. The modeled results are compared with the observational afterglow data taken with and/or the sensitivity level of ground-based VHE instruments (e.g. STACEE, H.E.S.S., MAGIC, VERITAS, and Whipple). We find that modeled SSC emission from bright and nearby bursts such as GRB 030329 are detectable by these instruments even with a delayed observation time of ~10 hours.Comment: Proceeding of "Heidelberg International Symposium on High Energy Gamma-Ray Astronomy", held in Heidelberg, 7-11 July 2008, submitted to AIP Conference Proceedings. 4 pages, 3 figures, 1 tabl

    Suzaku observation of TeV blazar the 1ES 1218+304: clues on particle acceleration in an extreme TeV blazar

    Get PDF
    We observed the TeV blazar 1ES 1218+304 with the X-ray astronomy satellite Suzaku in May 2006. At the beginning of the two-day continuous observation, we detected a large flare in which the 5-10 keV flux changed by a factor of ~2 on a timescale of 5x10^4 s. During the flare, the increase in the hard X-ray flux clearly lagged behind that observed in the soft X-rays, with the maximum lag of 2.3x10^4 s observed between the 0.3-1 keV and 5-10 keV bands. Furthermore we discovered that the temporal profile of the flare clearly changes with energy, being more symmetric at higher energies. From the spectral fitting of multi-wavelength data assuming a one-zone, homogeneous synchrotron self-Compton model, we obtain B~0.047 G, emission region size R = 3.0x10^16 cm for an appropriate beaming with a Doppler factor of delta = 20. This value of B is in good agreement with an independent estimate through the model fit to the observed time lag ascribing the energy-dependent variability to differential acceleration timescale of relativistic electrons provided that the gyro-factor \xi is 10^5.Comment: 11 pages, 3 figures, Accepted for publication in ApJ

    Discovery of very high energy gamma-rays from the flat spectrum radio quasar 3C 279 with the MAGIC telescope

    Full text link
    3C 279 is one of the best studied flat spectrum radio quasars located at a comparatively large redshift of z = 0.536. Observations in the very high energy band of such distant sources were impossible until recently due to the expected steep energy spectrum and the strong gamma-ray attenuation by the extragalactic background light photon field, which conspire to make the source visible only with a low energy threshold. Here the detection of a significant gamma-ray signal from 3C 279 at very high energies (E > 75 GeV) during a flare in early 2006 is reported. Implications of its energy spectrum on the current understanding of the extragalactic background light and very high energy gamma-ray emission mechanism models are discussed.Comment: 4 pages, 6 figures, submitted to proceedings of "4th Heidelberg International Symposium on High Energy Gamma-Ray Astronomy 2008

    Electronic excitations stabilized by a degenerate electron gas in semiconductors

    Get PDF
    Excitons in semiconductors and insulators consist of fermionic subsystems, electrons and holes, whose attractive interaction facilitates bound quasiparticles with quasi-bosonic character. In the presence of a degenerate electron gas, such excitons dissociate due to free carrier screening. Despite their absence, we found pronounced emission traces in the below-band-edge region of bulk, germanium-doped GaN up to a temperature of 100 K, mimicking sharp spectral features at high free electron concentrations (3.4E19–8.9E19 cm−3). Our interpretation of the data suggests that a degenerate, three-dimensional electron gas stabilizes a novel class of quasiparticles, which we name collexons. These many-particle complexes are formed by exchange of electrons with the Fermi gas. The potential observation of collexons and their stabilization with rising doping concentration is enabled by high crystal quality due to the almost ideal substitution of host atoms with dopants.DFG, 43659573, SFB 787: Semiconductor Nanophotonics: Materials, Models, Device

    The new Felsenkeller 5 MV underground accelerator

    Full text link
    The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3He({\alpha},{\gamma})7Be reaction, provide the necessary nuclear energy to prevent the gravitational collapse of the Sun and give rise to the by now well-studied pp, 7Be, and 8B solar neutrinos. The not yet measured flux of 13N, 15O, and 17F neutrinos from the carbon-nitrogen-oxygen cycle is affected in rate by the 14N(p,{\gamma})15O reaction and in emission profile by the 12C(p,{\gamma})13N reaction. The nucleosynthetic output of the subsequent phase in stellar evolution, helium burning, is controlled by the 12C({\alpha},{\gamma})16O reaction. In order to properly interpret the existing and upcoming solar neutrino data, precise nuclear physics information is needed. For nuclear reactions between light, stable nuclei, the best available technique are experiments with small ion accelerators in underground, low-background settings. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso/Italy, using a 0.4 MV accelerator. The present contribution reports on a higher-energy, 5.0 MV, underground accelerator in the Felsenkeller underground site in Dresden/Germany. Results from {\gamma}-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory for nuclear astrophysics purposes. The accelerator is in the commissioning phase and will provide intense, up to 50{\mu}A, beams of 1H+, 4He+ , and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.Comment: Submitted to the Proceedings of the 5th International Solar Neutrino Conference, Dresden/Germany, 11-14 June 2018, to appear on World Scientific -- updated version (Figure 2 and relevant discussion updated, co-author A. Domula added

    Temperature-dependent recombination coefficients in InGaN light-emitting diodes : hole localization, Auger processes, and the green gap

    Get PDF
    We obtain temperature-dependent recombination coefficients by measuring the quantum efficiency and differential carrier lifetimes in the state-of-the-art InGaN light-emitting diodes. This allows us to gain insight into the physical processes limiting the quantum efficiency of such devices. In the green spectral range, the efficiency deteriorates, which we assign to a combination of diminishing electronhole wave function overlap and enhanced Auger processes, while a significant reduction in material quality with increased In content can be precluded. Here, we analyze and quantify the entire balance of all loss mechanisms and highlight the particular role of hole localization

    Epitaxial growth and characterization of multi-layer site-controlled InGaAs quantum dots based on the buried stressor method

    Full text link
    We report on the epitaxial growth, theoretical modeling, and structural as well as optical investigation of multi-layer, site-controlled quantum dots fabricated using the buried stressor method. This advanced growth technique utilizes the strain from a partially oxidized AlAs layer to induce site-selective nucleation of InGaAs quantum dots. By implementing strain-induced spectral nano-engineering, we achieve separation in emission energy by about 150 meV of positioned and non-positioned quantum dots and a local increase of the emitter density in a single layer. Furthermore, we achieve a threefold increase of the optical intensity and reduce the inhomogeneous broadening of the ensemble emission by 20% via stacking three layers of site-controlled emitters, which is particularly valuable for using the SCQDs in microlaser applications. Moreover, we obtain direct control over emission properties by adjusting the growth and fabrication parameters. Our optimization of site-controlled growth of quantum dots enables the development of photonic devices with enhanced light-matter interaction and microlasers with increased confinement factor and spontaneous emission coupling efficiency

    MicroRNA-126-3p/5p and Aortic Stiffness in Patients with Turner Syndrome

    Get PDF
    Background: Turner Syndrome (TS) is a relatively rare X-chromosomal disease with increased cardiovascular morbidity and mortality. This study aimed to identify whether the circulating miR-126-3p/5p are involved in the pathophysiology of vascular dysfunction in TS. Methods: Using the RT-qPCR, the abundance levels of miR-126-3p and miR-126-5p were determined in 33 TS patients and 33 age-matched healthy volunteers (HVs). Vascular screening, including the assessment of blood pressure, pulse wave velocity, augmentation index, aortic deformation, arterial distensibility, and arterial elastance, was conducted in TS patients and HVs. Results: The abundance levels of miR-126-3p and miR-126-5p were significantly higher in TS patients compared to HVs (p < 0.0001). Within the TS cohort, miR-126-3p/5p correlated significantly with aortic deformation (r = 0.47, p = 0.01; r = 0.48, p < 0.01) and arterial distensibility (r = 0.55, p < 0.01; r = 0.48, p < 0.01). In addition, a significant negative correlation was demonstrated between miR-126-3p and arterial elastance (r = −0.48, p = 0.01). The receiver operating characteristic analysis showed that miR-126-3p and miR-126-5p separated the tested groups with high sensitivity and specificity. Conclusions: The abundance levels of miR-126-3p and miR-126-5p were significantly higher in TS patients compared to HVs. Within the TS cohort, a lower abundance level of miR-126-3p and miR-126-5p was linked with a significantly higher aortic stiffness

    Correlative analysis on InGaN/GaN nanowires: structural and optical properties of self-assembled short-period superlattices

    Get PDF
    : The influence of self-assembled short-period superlattices (SPSLs) on the structural and optical properties of InGaN/GaN nanowires (NWs) grown by PAMBE on Si (111) was investigated by STEM, EDXS, ”-PL analysis and k·p simulations. STEM analysis on single NWs indicates that in most of the studied nanostructures, SPSLs self-assemble during growth. The SPSLs display short-range ordering of In-rich and In-poor InxGa1-xN regions with a period of 2-3&nbsp;nm that are covered by a GaN shell and that transition to a more homogenous InxGa1-xN core. Polarization- and temperature-resolved PL analysis performed on the same NWs shows that they exhibit a strong parallel polarized red-yellow emission and a predominantly perpendicular polarized blue emission, which are ascribed to different In-rich regions in the nanostructures. The correlation between STEM, ”-PL and k·p simulations provides better understanding of the rich optical emission of complex III-N nanostructures and how they are impacted by structural properties, yielding the significant impact of strain on self-assembly and spectral emission
    • 

    corecore